EPITA / InfoS1	Novembre 2017
NOM : Prénom :	

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (5 points – pas de points négatifs pour le QCM)

- A. Choisissez la bonne réponse :
- 1. Une différence de potentiels entre 2 points est aussi appelée :
 - a- Une intensité

c- Une puissance

b- Une tension

d- Une conductance

2. Pour mesurer l'intensité d'un courant dans un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.

a- VRAI

b- FAUX

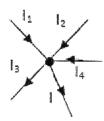
3. Le courant qui entre dans un générateur a une intensité plus faible que celle de celui qui en ressort.

a- VRAI

b- FAUX

4. Dans le schéma ci-dessus, on a les courants suivants :

$$I_1 = 5mA$$
; $I_2 = 1mA$; $I_3 = 1mA$; $I_4 = -3mA$


Calculer le courant I.

a- I = 4 mA

c- $I = 10 \, mA$

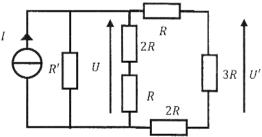
b- I = 2 mA

d-I = 8 mA

5. Quand on associe 2 résistances en parallèle, on conserve :

a- Le courant qui les traverse

c- Rien du tout

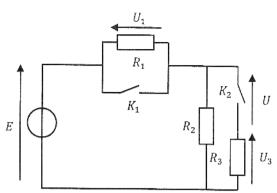

b- la tension à leurs bornes

- B. Soit des résistances de valeurs $R_1=1\,\Omega$ et $R_2=1\mathrm{k}\Omega$. Calculer les résistances équivalentes :
 - 1. R_2 et R_2 en série
 - 2. R_1 et R_2 en série
 - 3. R_1 et R_1 en parallèle
 - 4. $10 \text{ résistances } R_1 \text{ en série}$
 - 5. $10 \text{ résistances } R_2 \text{ en parallèle}$

<u>Exercice 2.</u> Généralités et Lois de Kirchhoff (6 points)

On considère le circuit ci-contre dans lequel on suppose connus I et R.

1. Exprimer la résistance R' en fonction de R pour que $U = \frac{R\,I}{4}.$



2. Déterminer l'expression de la tension U' en fonction de I et des résistances. (On prendra toujours $U=\frac{R.I}{4}$)

Exercice 3. Lois de Kirchoff (4,5 points)

Soit le circuit su ivant :

Remarque préalable : les réponses attendues dépendent des positions des interrupteurs et sont indépendantes les unes des autres : ce n'est donc pas un "grand" exercice mais 4 "petits" à partir du même schéma. Redessinez les circuits sur votre brouillon pour pouvoir répondre correctement aux

questions, et, Commencez par les cas qui vous paraissent les plus simples!

La tension E et les 3 résistances sont supposées connues.

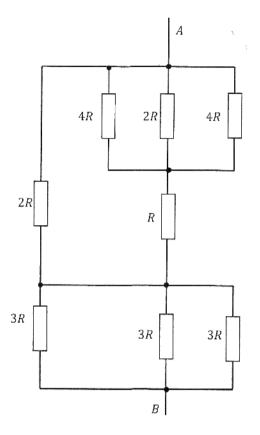
Remplir le tableau suivant (résultat seul, pas le détail des calculs). Les tensions demandées ne devront dépendre $\underline{\text{QUE de }E\text{ et/ou des résistances }R_1, R_2\text{ ou }R_3}$ (sauf s'ils sont nuls !) $\underline{\text{et PAS les }unes \text{ des autres }!!}$

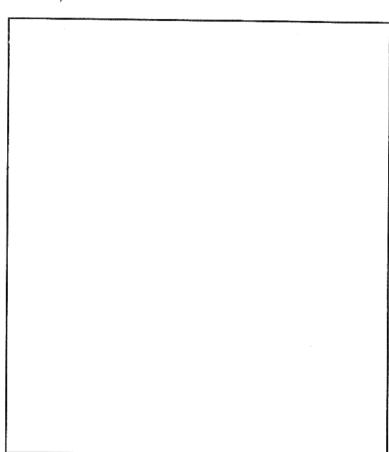
Posez-vous les bonnes questions ... vous aurez les bonnes réponses !!


K_1	K_2	U_1	U_3	U
0	0			
0	F			
F	0			
F	F	,		

Rq : O = OuvertF = Fermé

Exercice 4. Théorème de superposition (2,5 points)


Soit le circuit suivant :


Déterminer l'expression de I_1 dans R_1 en fonction de E_1 , I_3 , R_1 , R_2 , R_3 en utilisant le théorème de superposition.

Exercice 5. Association de résistances (2 points)

Quelle est la résistance équivalente totale (détaillez votre raisonnement – On imagine que le courant « entre » par le point A et « ressort » en B)

