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Pointers

● Pointers are probably one of the most important 
concepts in programming.

● Pointers are also an unsafe tool. Most software 
failures stem from pointer issues.

● Pointers also seem to be the hardest concept to 
learn.
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Pointers

● Pointers hold memory addresses.
● Memory addresses are similar to array indexes.
● They are fixed-length unsigned integers.
● They point to specific memory cells.
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Addresses and Memory Cells

The address 5000
16

 contains 5F
16

The address 5001
16

 contains 27
16

…

The address 5007
16

 contains 3A
16
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Declaration and Initialization

The address of cc is denoted by &c&c.
The address of uiui is denoted by &ui&ui.
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Dereferencing Pointers (1)

c  = A
c  = 0x41
p  = 0x7fff1815417f
*p = A
*p = 0x41

The value pointed to by pp is denoted by *p*p.
*p*p is then equivalent to cc.
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Dereferencing Pointers (2)

 i = 0x12345678
 p = 0x7ffe6bc5e764
*p = 0x12345678
-------------------
     q -> 78 <- p
 q + 1 -> 56
 q + 2 -> 34
 q + 3 -> 12
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Dereferencing Pointers (3)

i = 0x12345678
i = 0x123456aa
i = 0x1234bbaa
i = 0x12ccbbaa
i = 0xddccbbaa
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Common Mistakes

● Dereferencing uninitialized pointers
● Out-of-bound access
● Buffer overflow
● Use after deallocations
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Common Mistakes – Example

p = (nil)
Segmentation fault (core dumped)
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Passing Pointers as Parameters (1)

x = 1, y = 9
x = 1, y = 9
x = 9, y = 1
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Passing Pointers as Parameters (2)

100 / 0 = Error (division by zero)
100 / 2 = 50 it remains 0
100 / 4 = 25 it remains 0
100 / 6 = 16 it remains 4
100 / 8 = 12 it remains 4



  13

Pointer Arithmetic (1)

● Pointers are integers.
● Additions and subtractions are allowed on pointers.
● p + 1p + 1 does not point to the next byte but to the next value.
● The number of bytes for a value depends on its type.



  14

Pointer Arithmetic (2)

     pc = 0x7ffd983a4b23
 pc + 1 = 0x7ffd983a4b24
    pui = 0x7ffd983a4b24
pui + 1 = 0x7ffd983a4b28
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Pointer Arithmetic (3)

● Operation between pointers of 
different types are not allowed.

● The void*void* type can’t be used in 
pointer arithmetic (because the voidvoid 
type has no size).
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Pointers to Arrays (1)

● An array variable is a constant pointer.
● It points to a memory location that contains values of the same size.

aa and pp hold the same address value but:
● aa points to an array of size 3.
● pp points to the first value of aa (p = &a[0]).
● The size of aa is the size of the array in bytes (i.e. 6).
● The size of pp is the size of a pointer (it depends on the architecture).
● aa is constant.
● pp is not constant.
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Pointers to Arrays (2)

a[0] = 10  |  *(p + 0) = 10  |  p[0] = 10  |  *(a + 0) = 10
a[1] = 11  |  *(p + 1) = 11  |  p[1] = 11  |  *(a + 1) = 11
a[2] = 12  |  *(p + 2) = 12  |  p[2] = 12  |  *(a + 2) = 12
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Pointers to Arrays (3)

0x7ffd40a6e4c0 -> 0x000a
0x7ffd40a6e4c2 -> 0x000b
0x7ffd40a6e4c4 -> 0x000c

● We cannot replace pp by aa in the for loop.
● a++a++ is not allowed because aa is constant.
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Pointers to Arrays (4)

Size of the array in bytes:
(a points to the array.)
sizeof(a) = 6
-----------------------
Size of the p pointer:
(p points to the first element.)
sizeof(p) = 8
-----------------------
Size of one element:
sizeof(*a) = 2
sizeof(*p) = 2
-----------------------
Number of elements:
sizeof(a)/sizeof(*a) = 3
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Pointers to Arrays (5)

 sum(a, 5) = 60
psum(a, 5) = 60
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Pointers to Pointers
 &a = 0x7fff81c61030 -> 0x11223344     = a
 &b = 0x7fff81c61034 -> 0xaabbccdd     = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2
--------------------------------------
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