
 1

Practical Programming

The C Language :The C Language :

David BouchetDavid Bouchet

david.bouchet.epita@gmail.com

PointersPointers

 2

Pointers

● Pointers are probably one of the most important
concepts in programming.

● Pointers are also an unsafe tool. Most software
failures stem from pointer issues.

● Pointers also seem to be the hardest concept to
learn.

 3

Pointers

● Pointers hold memory addresses.
● Memory addresses are similar to array indexes.
● They are fixed-length unsigned integers.
● They point to specific memory cells.

 4

Addresses and Memory Cells

The address 5000
16

 contains 5F
16

The address 5001
16

 contains 27
16

…

The address 5007
16

 contains 3A
16

 5

Declaration and Initialization

The address of cc is denoted by &c&c.
The address of uiui is denoted by &ui&ui.

 6

Dereferencing Pointers (1)

c = A
c = 0x41
p = 0x7fff1815417f
*p = A
*p = 0x41

The value pointed to by pp is denoted by *p*p.
*p*p is then equivalent to cc.

 7

Dereferencing Pointers (2)

 i = 0x12345678
 p = 0x7ffe6bc5e764
*p = 0x12345678

 q -> 78 <- p
 q + 1 -> 56
 q + 2 -> 34
 q + 3 -> 12

 8

Dereferencing Pointers (3)

i = 0x12345678
i = 0x123456aa
i = 0x1234bbaa
i = 0x12ccbbaa
i = 0xddccbbaa

 9

Common Mistakes

● Dereferencing uninitialized pointers
● Out-of-bound access
● Buffer overflow
● Use after deallocations

 10

Common Mistakes – Example

p = (nil)
Segmentation fault (core dumped)

 11

Passing Pointers as Parameters (1)

x = 1, y = 9
x = 1, y = 9
x = 9, y = 1

 12

Passing Pointers as Parameters (2)

100 / 0 = Error (division by zero)
100 / 2 = 50 it remains 0
100 / 4 = 25 it remains 0
100 / 6 = 16 it remains 4
100 / 8 = 12 it remains 4

 13

Pointer Arithmetic (1)

● Pointers are integers.
● Additions and subtractions are allowed on pointers.
● p + 1p + 1 does not point to the next byte but to the next value.
● The number of bytes for a value depends on its type.

 14

Pointer Arithmetic (2)

 pc = 0x7ffd983a4b23
 pc + 1 = 0x7ffd983a4b24
 pui = 0x7ffd983a4b24
pui + 1 = 0x7ffd983a4b28

 15

Pointer Arithmetic (3)

● Operation between pointers of
different types are not allowed.

● The void*void* type can’t be used in
pointer arithmetic (because the voidvoid
type has no size).

 16

Pointers to Arrays (1)

● An array variable is a constant pointer.
● It points to a memory location that contains values of the same size.

aa and pp hold the same address value but:
● aa points to an array of size 3.
● pp points to the first value of aa (p = &a[0]).
● The size of aa is the size of the array in bytes (i.e. 6).
● The size of pp is the size of a pointer (it depends on the architecture).
● aa is constant.
● pp is not constant.

 17

Pointers to Arrays (2)

a[0] = 10 | *(p + 0) = 10 | p[0] = 10 | *(a + 0) = 10
a[1] = 11 | *(p + 1) = 11 | p[1] = 11 | *(a + 1) = 11
a[2] = 12 | *(p + 2) = 12 | p[2] = 12 | *(a + 2) = 12

 18

Pointers to Arrays (3)

0x7ffd40a6e4c0 -> 0x000a
0x7ffd40a6e4c2 -> 0x000b
0x7ffd40a6e4c4 -> 0x000c

● We cannot replace pp by aa in the for loop.
● a++a++ is not allowed because aa is constant.

 19

Pointers to Arrays (4)

Size of the array in bytes:
(a points to the array.)
sizeof(a) = 6

Size of the p pointer:
(p points to the first element.)
sizeof(p) = 8

Size of one element:
sizeof(*a) = 2
sizeof(*p) = 2

Number of elements:
sizeof(a)/sizeof(*a) = 3

 20

Pointers to Arrays (5)

 sum(a, 5) = 60
psum(a, 5) = 60

 21

Pointers to Pointers
 &a = 0x7fff81c61030 -> 0x11223344 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 22

Pointers to Pointers
 &a = 0x7fff81c61030 -> 0x11223344 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x00000000 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 23

Pointers to Pointers
 &a = 0x7fff81c61030 -> 0x11223344 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x00000000 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x12345678 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 24

Pointers to Pointers
 &a = 0x7fff81c61030 -> 0x11223344 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x00000000 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x12345678 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x12345678 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61034 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 25

Pointers to Pointers
 &a = 0x7fff81c61030 -> 0x11223344 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x00000000 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x12345678 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61030 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x12345678 = a
 &b = 0x7fff81c61034 -> 0xaabbccdd = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61034 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

 &a = 0x7fff81c61030 -> 0x12345678 = a
 &b = 0x7fff81c61034 -> 0x00000000 = b
&p1 = 0x7fff81c61038 -> 0x7fff81c61034 = p1
&p2 = 0x7fff81c61040 -> 0x7fff81c61038 = p2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

