EPITA

Mathématiques

Contrôle (S4)

mars 2018

Nom:

Prénom:

Classe:

NOTE:

Contrôle

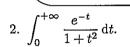
Durée : trois heures

Documents et calculatrices non autorisés

Exercice 1 (4 points)

Déterminer la nature des intégrales impropres suivantes :

1.
$$\int_0^1 \frac{\sqrt{1+t}-1}{t^3} \, \mathrm{d}t.$$

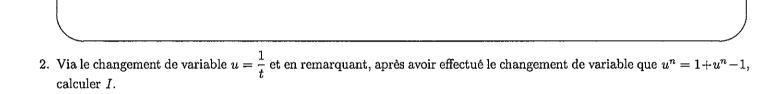


$$3. \int_0^{+\infty} \frac{1}{(1+t^2)\sqrt{t}} \, \mathrm{d}t.$$

Exercice 2 (3 points)

Soit $I = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^n)}$ où $n \in \mathbb{N}.$

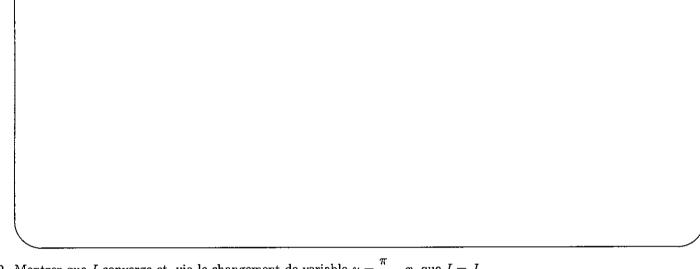
1. Montrer que I converge.



Exercice 3 (4 points)

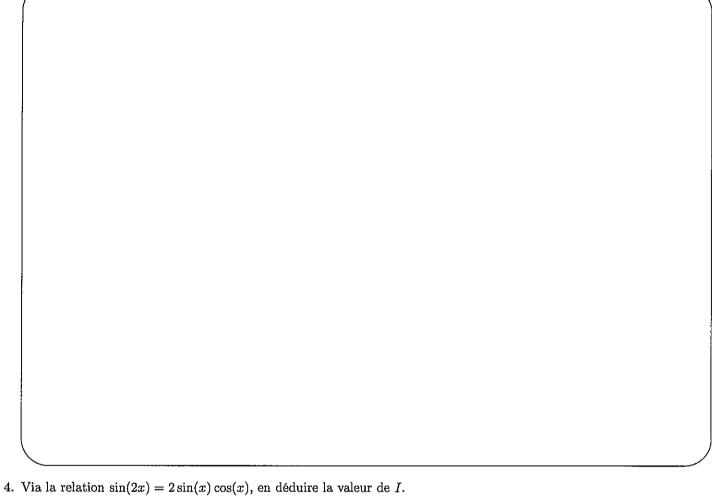
Soient $I = \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx$ et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx$.

1. Montrer (rigoureusement) que $\ln \left(\sin(x) \right) \sim \ln(x)$.



2. Montrer que I converge et, via le changement de variable $u=\frac{\pi}{2}-x,$ que I=J.

3. Montrer, via le changement de variable u=2x, que $I=\int_0^{\frac{\pi}{2}}\ln\bigl(\sin(2x)\bigr)\mathrm{d}x.$



Exercice 4	(3,5)	points)
------------	-------	--------	---

Soit $E = \mathbb{R}_2[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 P(x)Q(x)(1-x^2) dx$. Via la méthode de Gram-Schmidt, déterminer, à partir de la base $(1, X, X^2)$ de E une base orthogonale (P_0, P_1, P_2) de E pour \langle , \rangle .

Exercice 5 (3 points)

Soient (E, \langle , \rangle) un espace euclidien et $f: E \to E$ une application.

1. Supposons que f vérifie $\forall (x,y) \in E^2$: $\big\langle f(x)\,,y \big\rangle = -\big\langle x\,,f(y) \big\rangle$. Montrer que

$$\forall (x,y,z) \in E^3, \forall \lambda \in \mathbb{R} : \left\langle f(\lambda x + y) - \left(\lambda f(x) + f(y)\right), z \right\rangle = 0$$

2. Montrer que les deux assertions suivantes sont équivalentes :

 $(i) \ \forall (x,y) \in E^2 : \ \left\langle f(x) \, , y \right\rangle = - \left\langle x \, , f(y) \right\rangle$

(ii) $f \in \mathcal{L}(E)$ et $\forall x \in E \ \langle f(x), x \rangle = 0$

Exercice 6 (3 points)

Soit
$$I = \int_0^{+\infty} \frac{t^2 + 1}{t^4 + 1} dt$$
.

1. Via le changement de variable $u=\frac{t}{\sqrt{2}},$ déterminer $\int_0^{+\infty}\frac{\mathrm{d}t}{t^2+2}.$ En déduire la valeur de $\int_{-\infty}^{+\infty}\frac{\mathrm{d}t}{t^2+2}.$

