Suites et séries de fonctions

(six semaines)

(du lundi 18 février 2019 au vendredi 12 avril 2019)

Exercice 1

Étudier la convergence (simple et uniforme) des suites de fonctions suivantes :

1.
$$f_n(x) = \frac{\sin(nx)}{n}$$
 $(x \in \mathbb{R}).$

2.
$$f_n(x) = \frac{x}{n(1+x^n)}$$
 $(x \in \mathbb{R}^+)$.

3.
$$f_n(x) = \frac{x\sqrt{n}}{1 + nx^2}$$
 $(x \in \mathbb{R}).$

4.
$$f_n(x) = xe^{-nx} \quad (x \in \mathbb{R}^+).$$

5.
$$f_n(x) = \frac{\sin(nx)}{1 + n^2 x^2}$$
 $(x \in \mathbb{R}).$

6.
$$f_n(x) = \frac{x}{x^2 + n}$$
 $(x \in \mathbb{R})$.

7.
$$f_n(x) = xe^{\frac{x}{n}}$$
 $(x \in \mathbb{R}^+)$.

8.
$$f_n(x) = nx^2e^{-nx} \quad (x \in \mathbb{R}^+).$$

9.
$$f_n(x) = nx^n(1-x)$$
 $(x \in [0,1]).$

Exercice 2

Soit (f_n) la suite de fonctions définie sur [0,2] par

$$f_n(x) = \frac{x^n}{1 + x^n}$$

- 1. Étudier la convergence simple de (f_n) sur [0,2].
- 2. Étudier la convergence uniforme de (f_n) sur [0,2].

Exercice 3

1. Montrer que (f_n) la suite de fonctions définie sur [0,1] par

$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}$$

converge uniformément sur [0,1] vers une fonction f à déterminer.

2. En déduire la limite de la suite (u_n) définie par

$$u_n = \int_0^1 f_n(x) \, \mathrm{d}x$$

Auteur : Olivier Rodot Scanné par Hyperion annales.hyperion.tf

Soit (f_n) la suite de fonctions définie sur [-1,1] par

$$f_n(x) = \sin(nx)e^{-nx^2} + \sqrt{1-x^2}$$

- 1. Montrer que (f_n) converge simplement sur [-1,1] vers une fonction f à déterminer.
- 2. Montrer que pour tout a > 0, (f_n) converge uniformément vers f sur [a, 1].
- 3. Montrer que (f_n) ne converge pas uniformément vers f sur [0,1].

Exercice 5

Soit (f_n) la suite de fonctions définie sur [0,1] par

$$f_n(x) = \frac{nx}{nx+1}$$

- 1. Montrer que (f_n) converge simplement sur [0,1] vers une fonction f à déterminer.
- 2. Montrer que pour tout $a \in]0,1[,(f_n)$ converge uniformément vers f sur [a,1].
- 3. Étudier la convergence uniforme de (f_n) sur [0,1].

Exercice 6

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur \mathbb{R}_+ par

$$f_n(x) = \frac{1 + x^{2n+1}}{1 + x^{2n}}$$

- 1. Montrer que (f_n) converge simplement vers une fonction f à déterminer sur \mathbb{R}^+ .
- 2. Montrer que (f_n) converge uniformément vers f sur \mathbb{R}^+ .

 $\text{N.B.}: \text{pour } x>1, \text{ utiliser la majoration } \frac{x-1}{x^{2n}+1} \leqslant \frac{x-1}{x^{2n}-1} \text{ pour } f(x)-f_n(x) \, ;$

pour $x \in [0, 1[$, utiliser la majoration $\frac{x^{2n}(1-x)}{1+x^{2n}} \le \frac{x^{2n}(1-x)}{1-x^{2n}}$ pour $f(x) - f_n(x)$.

Exercice 7

Pour tout entier naturel non nul n, on définit les fonctions $f_n: \mathbb{R}^+ \longrightarrow \mathbb{R}$ et $g_n: \mathbb{R}^+ \longrightarrow \mathbb{R}$ par

$$f_n(t) = \frac{n}{n+t}$$
 et $g_n(t) = \frac{n}{(n+t)^2}$

- 1. Montrer que (f_n) et (g_n) convergent simplement sur \mathbb{R}^+ .
- 2. Montrer que (f_n) ne converge pas uniformément sur \mathbb{R}^+ et que (g_n) converge uniformément sur \mathbb{R}^+ .

Auteur : Olivier Rodot Scamné par Hyperion annales.hyperion.tf 3. Pour $n \in \mathbb{N}^*$, on définit sur \mathbb{R}^+ les fonctions F_n et G_n par

$$F_n(x) = \int_0^x f_n(t) dt$$
 et $G_n(x) = \int_0^x g_n(t) dt$

- a. Montrer que $F_n(x) = n \ln \left(1 + \frac{x}{n}\right)$.
- b. En déduire que (F_n) converge simplement sur \mathbb{R}^+ . La convergence est-elle uniforme? $\int_0^{+\infty} f_n(t) dt$ est-elle convergente?
- c. Montrer que (G_n) converge simplement sur \mathbb{R}^+ mais que la convergence n'est pas uniforme. $\int_0^{+\infty} g_n(t) dt$ est-elle convergente?
- 4. A-t-on les égalités suivantes pour tout $x \in \mathbb{R}^+$:

$$\lim_{n \to +\infty} F_n(x) = \int_0^x \lim_{n \to +\infty} f_n(t) dt ?$$

$$\lim_{n \to +\infty} G_n(x) = \int_0^x \lim_{n \to +\infty} g_n(t) dt ?$$

Exercice 8

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur [0,1] par

$$f_n(x) = (-1)^n \frac{x^n}{n}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur [0,1].
- 2. Étudier la convergence uniforme de $\sum f_n$ sur [0,1].
- 3. Étudier la convergence absolue de $\sum f_n$ sur [0,1].

Exercice 9

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur $\mathbb R$ par

$$f_n(x) = \frac{1}{n^x}$$

- 1. Étudier la convergence simple et absolue de $\sum f_n$ sur \mathbb{R} .
- 2. Montrer que $\sum f_n$ ne converge pas uniformément sur $]1,+\infty[$.

N.B.: on pourra utiliser pour tout $x \in]1, +\infty[$ la minoration $\frac{1}{k^x} \geqslant \int_k^{k+1} \frac{\mathrm{d}t}{t^x}$ afin de montrer que la suite des restes (R_n) ne converge pas uniformément vers la fonction nulle sur $]1, +\infty[$.

Auteur : Olivier Rodot Scanné par Hyperion annales.hyperion.tf

Soit (f_n) la suite de fonctions définie sur \mathbb{R} par

$$f_n(x) = ne^{-nx}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R} .
- 2. Montrer que pour tout a > 0, $\sum f_n$ converge uniformément sur $[a, +\infty[$.
- 3. $\sum f_n$ converge-t-elle uniformément sur $[0, +\infty[\,?\,$ sur $]0, +\infty[\,?\,$

Exercice 11

Soit la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définie sur \mathbb{R}^+ par

$$f_n(x) = \frac{(-1)^n}{n+x}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 2. Étudier la convergence uniforme de $\sum f_n$ sur \mathbb{R}^+ .
- 3. Montrer que $\sum f_n$ ne converge pas normalement sur \mathbb{R}^+ .

Exercice 12

Soit (f_n) la suite de fonctions définie sur \mathbb{R}^+ par

$$f_n(x) = xe^{-n^2x^2}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 2. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ .
- 3. Montrer, en minorant $R_n(x)$ pour tout $x \in \mathbb{R}_+$ par $\sum_{k=n+1}^{2n} f_k(x)$, que $\sum f_n$ ne converge pas uniformément sur \mathbb{R}^+ .

Exercice 13

Soit (f_n) la suite de fonctions définie sur \mathbb{R}^+ par

$$f_n(x) = \frac{x}{n(1+nx^2)}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 2. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ .
- 3. Étudier la convergence uniforme de $\sum f_n$ sur \mathbb{R}^+ .

Auteur : Olivier Rodot Scariné par Hyperion annales.hyperion.tf

Soit (f_n) la suite de fonctions définie sur $\mathbb R$ par

$$f_n(x) = \frac{(-1)^n}{n} e^{-x\sqrt{n}}$$

- 1. Étudier la convergence simple de $(|f_n|)$ sur \mathbb{R}^+ .
- 2. Étudier la convergence uniforme de $(|f_n|)$ sur \mathbb{R}^+ .
- 3. Étudier la convergence absolue de $\sum f_n$ sur \mathbb{R}^+ .
- 4. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- 5. Étudier la convergence normale de $\sum f_n$ sur tout intervalle $[a, +\infty[$ où a > 0.
- 6. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ et sur \mathbb{R}^*_+ .
- 7. Étudier la convergence uniforme de $\sum f_n$ sur \mathbb{R}^+ .

Exercice 15

1. Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie pour tout $x\in\mathbb{R}^+$ par

$$f_n(x) = \frac{xe^{-nx}}{n^2}$$

- a. Étudier la convergence simple de (f_n) sur \mathbb{R}^+ .
- b. Étudier la convergence uniforme de (f_n) sur \mathbb{R}^+ .
- c. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}^+ .
- d. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R}^+ .
- 2. Soient $a \in \mathbb{R}$ et $(f_n)_{n \in \mathbb{N}^*}$ la suite de fonctions définie pour tout $x \in \mathbb{R}^+$ par

$$f_n(x) = n^a x e^{-nx}$$

- a. Étudier la convergence simple de (f_n) en fonction de a sur \mathbb{R}^+ .
- b. Étudier la convergence uniforme de (f_n) en fonction de a sur \mathbb{R}^+ .
- c. Étudier la convergence simple de $\sum f_n$ en fonction de a sur \mathbb{R}^+ .
- d. Étudier la convergence normale de $\sum f_n$ en fonction de a sur \mathbb{R}^+ .

Exercice 16

Soit f, la fonction 2π -périodique définie par f(x) = |x| sur $[-\pi, \pi]$.

- 1. Donner la série de Fourier de f.
- 2. En déduire $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- 3. Calculer $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Auteur : Olivier Rodot Scanfié par Hyperion annales.hyperion.tf

Soit f, la fonction 2π -périodique définie par $f(x) = \begin{cases} 0 & \text{si } x \in [-\pi, 0[\\ x & \text{si } x \in [0, \pi[$

- 1. Déterminer la série de Fourier de f.
- 2. En déduire $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$ puis $\sum_{p=1}^{+\infty} \frac{1}{p^2}$.