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Quick Overview

1.IP and Protocol Stack
2.TCP Concepts
3.Client / Server Concepts
4.Socket API
5.Code
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Computer Network Programming

Connecting computers and networksConnecting computers and networks
to each otherto each other
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Computer Network Programming

How can we connect these two computers?How can we connect these two computers?

?
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The Internet Protocol – IP

Goals:Goals: Abstracting heterogeneous networks Abstracting heterogeneous networks

● Interconnected Networks
● Unified address space over the whole network
● Provides a global logical net over physical ones
● Routing: Selecting paths in networks
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The Internet Protocol – IP

Each computer has an IP addressEach computer has an IP address

128.12.97.65128.12.97.65 247.125.109.87247.125.109.87… … routing ...routing ...

IPv4:IPv4: 32-bit address

IPv6:IPv6: 128-bit address
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Network Packets

128.12.97.65128.12.97.65 247.125.109.87247.125.109.87

110010 011010 010001

… … packet forwarding ...packet forwarding ...

Data is split into packetsData is split into packets
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Protocol Stack

● IP relies on a whole stack of protocols
● Horizontal logical connection
● Vertical concrete communication
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Protocol Stack
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Protocol Stack

● Physical Layer:Physical Layer: Made up of electronic circuits

● Device Driver:Device Driver: Software interface to drive the 
physical layer

● Low Level Protocol:Low Level Protocol: Transfers data between 
adjacent or local networks

● Internet Protocol:Internet Protocol: Routing and packet forwarding.
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Protocol Stack

● Transport Layer:Transport Layer: Protocols (TCP, UDP, etc.) that provide 
services:

● delivery to applications,
● connected or not,
● same or different order delivery,
● reliability or unreliability,
● flow control,
● etc.

● Application Layer:Application Layer: Specifies communication protocols and 
interface methods (FTP, SMTP, HTTP, Telnet, IMAP, etc.)
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Transport Layer

TCPTCP
● Stream oriented
● Connected
● Acknowledgement
● Retransmissions
● Packets ordering
● Timeouts

UDPUDP
● Datagram oriented
● Not connected
● No reception check
● Fire and forget
● No ordering
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Client / Server Model

ClientClient
● User of the service
● Initiates connection
● Ends connection (TCP)
● Uses dynamic ports

ServerServer
● Service provider
● Waits for connection
● Serves multiple clients
● Uses fixed ports
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Client / Server Model

ExampleExample

The InternetThe InternetClientClient
(The Web Browser)(The Web Browser)

ServerServer
(Apache, IIS)(Apache, IIS)
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Port Numbers

● IP addresses identify hosts
● Applications identified by port numbers
● All TCP (or UDP) communications use ports
● A connection is identified by the double pair:

( (IP1, port1) , (IP2, port2) )( (IP1, port1) , (IP2, port2) )

Port Number: 16-bit unsigned integer16-bit unsigned integer (from 0 to 65,535)
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Socket API

● Most used API for TCPTCP / UDPUDP connections
● Compatible with classic C Input / Output
● Once established, a socket is just an FDFD
● Use recv(2)recv(2) / send(2)send(2)
● Or  read(2)read(2) / write(2)write(2)
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Network Address and Service Translation

● int getaddrinfogetaddrinfo(const char *nodenode,
                const char *serviceservice,
                const struct addrinfoaddrinfo *hintshints,
                struct addrinfoaddrinfo **resres);

● void freeaddrinfofreeaddrinfo(struct addrinfoaddrinfo *resres);

● const char *gai_strerrorgai_strerror(int errcodeerrcode);

getaddrinfo(3)

https://manpages.debian.org/stretch/manpages-dev/getaddrinfo.3.en.html
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Using getaddrinfo(3)

getaddrinfo()getaddrinfo() returns one or more addrinfoaddrinfo 
structures, each of which contains an Internet 
address that can be specified in a call to bind(2)bind(2) or 
connect(2)connect(2).

struct addrinfo {
    int              ai_flags;
    int              ai_family;
    int              ai_socktype;
    int              ai_protocol;
    socklen_t        ai_addrlen;
    struct sockaddr *ai_addr;
    char            *ai_canonname;
    struct addrinfo *ai_next;
};

getaddrinfo(3)

https://manpages.debian.org/stretch/manpages-dev/getaddrinfo.3.en.html
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Using getaddrinfo(3)

If hintshints is not NULL it points to an addrinfoaddrinfo 
structure whose ai_flagsai_flags, ai_familyai_family, 
ai_socktypeai_socktype, and ai_protocolai_protocol specify some 
criteria that limit the set of socket addresses 
returned by getaddrinfo()getaddrinfo().

All other fields in the structure pointed to by 
hintshints must contain either 0 or a null pointer.

getaddrinfo(3)

https://manpages.debian.org/stretch/manpages-dev/getaddrinfo.3.en.html
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TCP Client Connection

● Use getaddrinfo().

● For each addrinfoaddrinfo struct, try to:
➢ Create the socket: socket(2)
➢ Connect to the socket: connect(2)
➢ Stop when a connection is established.

● Read from / write to the socket.

● Close the connection.

https://manpages.debian.org/stretch/manpages-dev/socket.2.en.html
https://manpages.debian.org/stretch/manpages-dev/connect.2.en.html


21

TCP Client Connection

  struct addrinfo hints;
  struct addrinfo *result;
  int addrinfo_error;

  memset(&hints, 0, sizeof (struct addrinfo));
  hints.ai_family = AF_INET;       // IPv4 only
  hints.ai_socktype = SOCK_STREAM; // TCP

  // Get your info
  addrinfo_error = getaddrinfo(name, port, &hints, &result);

  // Error management
  if (addrinfo_error != 0)
  {
     errx(EXIT_FAILURE, "Fail getting address for %s on port %s: %s",
     name, port, gai_strerror(addrinfo_error));
  }
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TCP Client Connection

  // result points to a linked list
  // try to connect for each result
  for (rp = result; rp != NULL; rp = rp->ai_next)
  {
    cnx = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
    if (cnx == -1) continue;
    if (connect(cnx, rp->ai_addr, rp->ai_addrlen) != -1) break;
    close(cnx);
  }

  freeaddrinfo(result);

  if (rp == NULL)

    errx(EXIT_FAILURE, "Couldn't connect");
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TCP Client Connection (deprecated)

void client() {
  int                   sockfd;
  struct sockaddr_in    addr;
  struct hostent       *server;
  // Socket creation
  sockfd = socket(AF_INET, SOCK_STREAM, 0);
  // Get server address
  server = gethostbyname("example.com");
  // Init sockaddr struct
  memset(&addr, 0, sizeof (struct sockaddr_in));
  addr.sin_family = AF_INET;
  memcpy(&addr.sin_addr.s_addr, server->h_addr_list[0], server->h_length);
  addr.sin_port = htons(80);
  // Connection
  connect(sockfd, (struct sockaddr*)&addr, sizeof (struct sockaddr_in));
  // read/write on sockfd
  // Done
  close(sockfd);
}
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TCP Server Connection

● Use getaddrinfo()getaddrinfo() with:
hints.ai_flags = AI_PASSIVE;

● For each addrinfoaddrinfo struct, try to:
➢ Create the socket: socket(2)
➢ Bind the socket: bind(2)

● Use listen(2) to listen for connection.

● In an infinite loop:
➢ Use accept() to accept incoming connection.
➢ Read from / write to the socket.
➢ Close the connection.

https://manpages.debian.org/stretch/manpages-dev/socket.2.en.html
https://manpages.debian.org/stretch/manpages-dev/bind.2.en.html
https://manpages.debian.org/stretch/manpages-dev/listen.2.en.html
https://manpages.debian.org/stretch/manpages-dev/accept.2.en.html
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Getting and Setting Options on Sockets

The getsockopt(2) and setsockopt(2) functions
allow you to get and set different

options on sockets.

The options are listed in socket(7).

https://manpages.debian.org/stretch/manpages-dev/setsockopt.2.en.html
https://manpages.debian.org/stretch/manpages-dev/setsockopt.2.en.html
http://man7.org/linux/man-pages/man7/socket.7.html
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Getting and Setting Options on Sockets

When you close a socket, the connection is not 
necessarily closed immediately by the system.
Therefore, you cannot bind again to the server 

right away. You have to wait.

When the SO_REUSEADDRSO_REUSEADDR option is enabled, 
you can bind again to the server 

immediately.

ExampleExample
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Getting and Setting Options on Sockets

To enable the SO_REUSEADDRSO_REUSEADDR option, you 
have to set its value to 1.

ExampleExample
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More Than One Connection

Idea:Idea: Handling a connection while waiting for others.

  // after init ...

  listen(fd_accept, 5);

  for (;;) {

    // Accept a cnx

    fdcnx = accept(fd_accept, (struct sockaddr*)&remote, &rlen);

    if (fork()) {

      // father

      close(fdcnx);

      continue;

    }

    // child

    close(fd_accept);

    // Read/Write ... Wait for EOF from client side

    close(fdcnx);

  }
  close(fd_accept);
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Managing Zombies

● After each connection, the handling 
process becomes a zombie.

● We shall catch SIGCHLD to clear that.

void chldhandler(int sig)
{
  wait(NULL);
}

void server(uint16_t portno)
{
  // ...
  signal(SIGCHLD, chldhandler);
  // ...
}

void server(uint16_t portno)
{
  // ...
  signal(SIGCHLD, SIG_IGN);
  // ...
}

or
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Managing Zombies

[...]
POSIX.1-1990 disallowed setting the action for 
SIGCHLD to SIG_IGN. POSIX.1-2001 and later allow 
this possibility, so that ignoring SIGCHLD can be 
used to prevent the creation of zombies (see 
wait(2)). Nevertheless, the historical BSD and 
System V behaviors for ignoring SIGCHLD differ, so 
that the only completely portable method of 
ensuring that terminated children do not become 
zombies is to catch the SIGCHLD signal and perform 
a wait(2) or similar.
[...]

man 2 sigactionman 2 sigaction
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