
1

Practical Programming

NetworkNetwork
ProgrammingProgramming

David BouchetDavid Bouchet

david.bouchet.epita@gmail.com

2

Quick Overview

1.IP and Protocol Stack
2.TCP Concepts
3.Client / Server Concepts
4.Socket API
5.Code

3

Computer Network Programming

Connecting computers and networksConnecting computers and networks
to each otherto each other

4

Computer Network Programming

How can we connect these two computers?How can we connect these two computers?

?

5

The Internet Protocol – IP

Goals:Goals: Abstracting heterogeneous networks Abstracting heterogeneous networks

● Interconnected Networks
● Unified address space over the whole network
● Provides a global logical net over physical ones
● Routing: Selecting paths in networks

6

The Internet Protocol – IP

Each computer has an IP addressEach computer has an IP address

128.12.97.65128.12.97.65 247.125.109.87247.125.109.87… … routing ...routing ...

IPv4:IPv4: 32-bit address

IPv6:IPv6: 128-bit address

7

Network Packets

128.12.97.65128.12.97.65 247.125.109.87247.125.109.87

110010 011010 010001

… … packet forwarding ...packet forwarding ...

Data is split into packetsData is split into packets

8

Protocol Stack

● IP relies on a whole stack of protocols
● Horizontal logical connection
● Vertical concrete communication

9

Protocol Stack

Physical Layer
(wires)

Device Driver

Low level Protocol
(ethernet)

IP

Transport Layer
(TCP/UDP ...)

Application

Physical Layer
(wires)

Device Driver

Low level Protocol
(ethernet)

IP

Transport Layer
(TCP/UDP ...)

Application

Physical
link

Logical
link

10

Protocol Stack

● Physical Layer:Physical Layer: Made up of electronic circuits

● Device Driver:Device Driver: Software interface to drive the
physical layer

● Low Level Protocol:Low Level Protocol: Transfers data between
adjacent or local networks

● Internet Protocol:Internet Protocol: Routing and packet forwarding.

11

Protocol Stack

● Transport Layer:Transport Layer: Protocols (TCP, UDP, etc.) that provide
services:

● delivery to applications,
● connected or not,
● same or different order delivery,
● reliability or unreliability,
● flow control,
● etc.

● Application Layer:Application Layer: Specifies communication protocols and
interface methods (FTP, SMTP, HTTP, Telnet, IMAP, etc.)

12

Transport Layer

TCPTCP
● Stream oriented
● Connected
● Acknowledgement
● Retransmissions
● Packets ordering
● Timeouts

UDPUDP
● Datagram oriented
● Not connected
● No reception check
● Fire and forget
● No ordering

13

Client / Server Model

ClientClient
● User of the service
● Initiates connection
● Ends connection (TCP)
● Uses dynamic ports

ServerServer
● Service provider
● Waits for connection
● Serves multiple clients
● Uses fixed ports

14

Client / Server Model

ExampleExample

The InternetThe InternetClientClient
(The Web Browser)(The Web Browser)

ServerServer
(Apache, IIS)(Apache, IIS)

15

Port Numbers

● IP addresses identify hosts
● Applications identified by port numbers
● All TCP (or UDP) communications use ports
● A connection is identified by the double pair:

((IP1, port1) , (IP2, port2))((IP1, port1) , (IP2, port2))

Port Number: 16-bit unsigned integer16-bit unsigned integer (from 0 to 65,535)

16

Socket API

● Most used API for TCPTCP / UDPUDP connections
● Compatible with classic C Input / Output
● Once established, a socket is just an FDFD
● Use recv(2)recv(2) / send(2)send(2)
● Or read(2)read(2) / write(2)write(2)

17

Network Address and Service Translation

● int getaddrinfogetaddrinfo(const char *nodenode,
 const char *serviceservice,
 const struct addrinfoaddrinfo *hintshints,
 struct addrinfoaddrinfo **resres);

● void freeaddrinfofreeaddrinfo(struct addrinfoaddrinfo *resres);

● const char *gai_strerrorgai_strerror(int errcodeerrcode);

getaddrinfo(3)

https://manpages.debian.org/stretch/manpages-dev/getaddrinfo.3.en.html

18

Using getaddrinfo(3)

getaddrinfo()getaddrinfo() returns one or more addrinfoaddrinfo
structures, each of which contains an Internet
address that can be specified in a call to bind(2)bind(2) or
connect(2)connect(2).

struct addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;
 socklen_t ai_addrlen;
 struct sockaddr *ai_addr;
 char *ai_canonname;
 struct addrinfo *ai_next;
};

getaddrinfo(3)

https://manpages.debian.org/stretch/manpages-dev/getaddrinfo.3.en.html

19

Using getaddrinfo(3)

If hintshints is not NULL it points to an addrinfoaddrinfo
structure whose ai_flagsai_flags, ai_familyai_family,
ai_socktypeai_socktype, and ai_protocolai_protocol specify some
criteria that limit the set of socket addresses
returned by getaddrinfo()getaddrinfo().

All other fields in the structure pointed to by
hintshints must contain either 0 or a null pointer.

getaddrinfo(3)

https://manpages.debian.org/stretch/manpages-dev/getaddrinfo.3.en.html

20

TCP Client Connection

● Use getaddrinfo().

● For each addrinfoaddrinfo struct, try to:
➢ Create the socket: socket(2)
➢ Connect to the socket: connect(2)
➢ Stop when a connection is established.

● Read from / write to the socket.

● Close the connection.

https://manpages.debian.org/stretch/manpages-dev/socket.2.en.html
https://manpages.debian.org/stretch/manpages-dev/connect.2.en.html

21

TCP Client Connection

 struct addrinfo hints;
 struct addrinfo *result;
 int addrinfo_error;

 memset(&hints, 0, sizeof (struct addrinfo));
 hints.ai_family = AF_INET; // IPv4 only
 hints.ai_socktype = SOCK_STREAM; // TCP

 // Get your info
 addrinfo_error = getaddrinfo(name, port, &hints, &result);

 // Error management
 if (addrinfo_error != 0)
 {
 errx(EXIT_FAILURE, "Fail getting address for %s on port %s: %s",
 name, port, gai_strerror(addrinfo_error));
 }

22

TCP Client Connection

 // result points to a linked list
 // try to connect for each result
 for (rp = result; rp != NULL; rp = rp->ai_next)
 {
 cnx = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
 if (cnx == -1) continue;
 if (connect(cnx, rp->ai_addr, rp->ai_addrlen) != -1) break;
 close(cnx);
 }

 freeaddrinfo(result);

 if (rp == NULL)

 errx(EXIT_FAILURE, "Couldn't connect");

23

TCP Client Connection (deprecated)

void client() {
 int sockfd;
 struct sockaddr_in addr;
 struct hostent *server;
 // Socket creation
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 // Get server address
 server = gethostbyname("example.com");
 // Init sockaddr struct
 memset(&addr, 0, sizeof (struct sockaddr_in));
 addr.sin_family = AF_INET;
 memcpy(&addr.sin_addr.s_addr, server->h_addr_list[0], server->h_length);
 addr.sin_port = htons(80);
 // Connection
 connect(sockfd, (struct sockaddr*)&addr, sizeof (struct sockaddr_in));
 // read/write on sockfd
 // Done
 close(sockfd);
}

24

TCP Server Connection

● Use getaddrinfo()getaddrinfo() with:
hints.ai_flags = AI_PASSIVE;

● For each addrinfoaddrinfo struct, try to:
➢ Create the socket: socket(2)
➢ Bind the socket: bind(2)

● Use listen(2) to listen for connection.

● In an infinite loop:
➢ Use accept() to accept incoming connection.
➢ Read from / write to the socket.
➢ Close the connection.

https://manpages.debian.org/stretch/manpages-dev/socket.2.en.html
https://manpages.debian.org/stretch/manpages-dev/bind.2.en.html
https://manpages.debian.org/stretch/manpages-dev/listen.2.en.html
https://manpages.debian.org/stretch/manpages-dev/accept.2.en.html

25

Getting and Setting Options on Sockets

The getsockopt(2) and setsockopt(2) functions
allow you to get and set different

options on sockets.

The options are listed in socket(7).

https://manpages.debian.org/stretch/manpages-dev/setsockopt.2.en.html
https://manpages.debian.org/stretch/manpages-dev/setsockopt.2.en.html
http://man7.org/linux/man-pages/man7/socket.7.html

26

Getting and Setting Options on Sockets

When you close a socket, the connection is not
necessarily closed immediately by the system.
Therefore, you cannot bind again to the server

right away. You have to wait.

When the SO_REUSEADDRSO_REUSEADDR option is enabled,
you can bind again to the server

immediately.

ExampleExample

27

Getting and Setting Options on Sockets

To enable the SO_REUSEADDRSO_REUSEADDR option, you
have to set its value to 1.

ExampleExample

28

More Than One Connection

Idea:Idea: Handling a connection while waiting for others.

 // after init ...

 listen(fd_accept, 5);

 for (;;) {

 // Accept a cnx

 fdcnx = accept(fd_accept, (struct sockaddr*)&remote, &rlen);

 if (fork()) {

 // father

 close(fdcnx);

 continue;

 }

 // child

 close(fd_accept);

 // Read/Write ... Wait for EOF from client side

 close(fdcnx);

 }
 close(fd_accept);

29

Managing Zombies

● After each connection, the handling
process becomes a zombie.

● We shall catch SIGCHLD to clear that.

void chldhandler(int sig)
{
 wait(NULL);
}

void server(uint16_t portno)
{
 // ...
 signal(SIGCHLD, chldhandler);
 // ...
}

void server(uint16_t portno)
{
 // ...
 signal(SIGCHLD, SIG_IGN);
 // ...
}

or

30

Managing Zombies

[...]
POSIX.1-1990 disallowed setting the action for
SIGCHLD to SIG_IGN. POSIX.1-2001 and later allow
this possibility, so that ignoring SIGCHLD can be
used to prevent the creation of zombies (see
wait(2)). Nevertheless, the historical BSD and
System V behaviors for ignoring SIGCHLD differ, so
that the only completely portable method of
ensuring that terminated children do not become
zombies is to catch the SIGCHLD signal and perform
a wait(2) or similar.
[...]

man 2 sigactionman 2 sigaction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

