
 1

Rust :Rust :

David BouchetDavid Bouchet

david.bouchet.epita@gmail.com

Arrays and VectorsArrays and Vectors

Practical Programming

 2

Arrays

● Every element has the same type.
● The length is fixed.
● Data is allocated on the stack.
● Elements cannot be added or removed.
● If mutable, elements can change.

 3

Creating Arrays

a = [
 1,
 2,
 3,
 4
]
b = [
 true,
 false
]
c = [
 "Hello",
 "World",
 "!"
]

d = [
 13,
 13,
 13,
 13,
 13
]

 4

Indexing Arrays

a[2] = 3
b[0] = true
c[1] = "World"

 5

Mutable and Immutable Arrays

Elements cannot be added or removed.Elements cannot be added or removed.

Elements can change in mutable arrays only.Elements can change in mutable arrays only.

a = [
 1,
 55,
 3
]
b = [
 1,
 2,
 3
]

 6

Array Types

[T; n][T; n]

The length belongs to the type.The length belongs to the type.

● T: Type of the elements
● n: Number of elements

 7

Vectors

● Every element has the same type.
● The length is variable.
● Data is allocated on the heap.
● If mutable, elements can be added or removed.
● If mutable, elements can change.

 8

Creating Vectors

a = [
 1,
 2,
 3,
 4
]
b = [
 true,
 false
]
c = [
 "Hello",
 "World",
 "!"
]

d = [
 13,
 13,
 13,
 13,
 13
]

 9

Indexing Vectors

a[2] = 3
b[0] = true
c[1] = "World"

 10

Mutable Vectors

Elements can be added or removed.Elements can be added or removed.

Elements can changeElements can change

v = [
 "Good",
 "bye",
 ",",
 "World",
 "!!!!!"
]

 11

Vector Types

Vec<T>Vec<T>

The length does not belong to the type.The length does not belong to the type.

T: Type of the elements

 12

Array and Vector Lengths

a.len() = 17
v.len() = 24

 13

Iterating over Immutable References

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6

● The i variable is an
immutable reference.

● By default, Rust prints the
value that is pointed to by
the reference.

● dbg!(*i) would give the
same result.

 14

Iterating over Mutable References

a = [
 2,
 4,
 6
]
v = [
 8,
 10,
 12
]

The i variable is a mutable reference.

 15

Printing Arrays and Vectors

error[E0277]: `[u8; 3]` doesn't implement `std::fmt::Display`
 --> printing_default.rs:4:20
 |
4 | println!("{}", a);
 | ^ `[u8; 3]` cannot be formatted with the default formatter
 |
 = help: the trait `std::fmt::Display` is not implemented for `[u8; 3]`
 = note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead
 = note: required by `std::fmt::Display::fmt`

There is no default formatter for There is no default formatter for
arrays and vectors.arrays and vectors.

 16

Debug Printing

To print arrays and vectors with To print arrays and vectors with println!()println!(), ,
we must use the we must use the debug formatterdebug formatter::

a = [1, 2, 3]
v = [4, 5, 6]

 17

Implicit Dereferencing

a[1] = 2
v[1] = 5
(*ref_a)[1] = 2
(*ref_v)[1] = 5
ref_a[1] = 2
ref_v[1] = 5

 18

Slice Reference

&[T]&[T] T: Type of the elements

average(&a) = 2.0
average(&v) = 5.0

 19

Slicing

Array and vector slices can be referenced Array and vector slices can be referenced
in the same way as string slices.in the same way as string slices.

average(&a[1..]) = 3.5
average(&v[..2]) = 6.5
average(&a[1..=3]) = 3.0
average(&v[2..4]) = 8.5

 20

Converting Slices into Vectors

a = [1, 2, 3]
s = [2, 3]
v = [2, 3]
v = [2, 3, 18]

● The slice is copied into another memory space,
which is associated with a vector.

● In the example, ss and vv are independent.

 21

Mutable Slices

&mut [T]&mut [T] T: Type of the elements

a = [1, 2, 3, 4, 5, 6]
a = [1, 0, 0, 0, 0, 6]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

