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Arrays

● Every element has the same type.
● The length is fixed.
● Data is allocated on the stack.
● Elements cannot be added or removed.
● If mutable, elements can change.
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Creating Arrays

a = [
    1,
    2,
    3,
    4
]
b = [
    true,
    false
]
c = [
    "Hello",
    "World",
    "!"
]

d = [
    13,
    13,
    13,
    13,
    13
]
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Indexing Arrays

a[2] = 3
b[0] = true
c[1] = "World"
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Mutable and Immutable Arrays

Elements cannot be added or removed.Elements cannot be added or removed.

Elements can change in mutable arrays only.Elements can change in mutable arrays only.

a = [
    1,
    55,
    3
]
b = [
    1,
    2,
    3
]
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Array Types

[T; n][T; n]

The length belongs to the type.The length belongs to the type.

● T: Type of the elements
● n: Number of elements
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Vectors

● Every element has the same type.
● The length is variable.
● Data is allocated on the heap.
● If mutable, elements can be added or removed.
● If mutable, elements can change.
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Creating Vectors

a = [
    1,
    2,
    3,
    4
]
b = [
    true,
    false
]
c = [
    "Hello",
    "World",
    "!"
]

d = [
    13,
    13,
    13,
    13,
    13
]
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Indexing Vectors

a[2] = 3
b[0] = true
c[1] = "World"
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Mutable Vectors

Elements can be added or removed.Elements can be added or removed.

Elements can changeElements can change

v = [
    "Good",
    "bye",
    ",",
    "World",
    "!!!!!"
]
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Vector Types

Vec<T>Vec<T>

The length does not belong to the type.The length does not belong to the type.

T: Type of the elements
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Array and Vector Lengths

a.len() = 17
v.len() = 24
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Iterating over Immutable References

i = 1
i = 2
i = 3
i = 4
i = 5
i = 6

● The i variable is an 
immutable reference.

● By default, Rust prints the 
value that is pointed to by 
the reference.

● dbg!(*i) would give the 
same result.
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Iterating over Mutable References

a = [
    2,
    4,
    6
]
v = [
    8,
    10,
    12
]

The i variable is a mutable reference.
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Printing Arrays and Vectors

error[E0277]: `[u8; 3]` doesn't implement `std::fmt::Display`
 --> printing_default.rs:4:20
  |
4 |     println!("{}", a);
  |                    ^ `[u8; 3]` cannot be formatted with the default formatter
  |
  = help: the trait `std::fmt::Display` is not implemented for `[u8; 3]`
  = note: in format strings you may be able to use `{:?}` (or {:#?} for pretty-print) instead
  = note: required by `std::fmt::Display::fmt`

There is no default formatter for There is no default formatter for 
arrays and vectors.arrays and vectors.
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Debug Printing

To print arrays and vectors with To print arrays and vectors with println!()println!(), , 
we must use the we must use the debug formatterdebug formatter::

a = [1, 2, 3]
v = [4, 5, 6]
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Implicit Dereferencing

a[1] = 2
v[1] = 5
(*ref_a)[1] = 2
(*ref_v)[1] = 5
ref_a[1] = 2
ref_v[1] = 5
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Slice Reference

&[T]&[T] T: Type of the elements

average(&a) = 2.0
average(&v) = 5.0
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Slicing

Array and vector slices can be referenced Array and vector slices can be referenced 
in the same way as string slices.in the same way as string slices.

average(&a[1..]) = 3.5
average(&v[..2]) = 6.5
average(&a[1..=3]) = 3.0
average(&v[2..4]) = 8.5
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Converting Slices into Vectors

a = [1, 2, 3]
s = [2, 3]
v = [2, 3]
v = [2, 3, 18]

● The slice is copied into another memory space, 
which is associated with a vector.

● In the example, ss and vv are independent.
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Mutable Slices

&mut [T]&mut [T] T: Type of the elements

a = [1, 2, 3, 4, 5, 6]
a = [1, 0, 0, 0, 0, 6]
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