
 1

Rust :Rust :

David BouchetDavid Bouchet

david.bouchet.epita@gmail.com

Common Programming Common Programming
ConceptsConcepts

Practical Programming

 2

Scalar Types – Integers

i8 // 8 bits
i16 // 16 bits
i32 // 32 bits
i64 // 64 bits
i128 // 128 bits
isize // Architecture-dependent size

u8 // 8 bits
u16 // 16 bits
u32 // 32 bits
u64 // 64 bits
u128 // 128 bits
usize // Architecture-dependent size

Source: https://doc.rust-lang.org/reference/types/numeric.html#integer-types

Signed Integers:Signed Integers:

Unsigned Integers:Unsigned Integers:

https://doc.rust-lang.org/reference/types/numeric.html#integer-types

 3

Other Scalar Types

f32 // IEEE754 - Single precision
f64 // IEEE754 - Double precision

The Floating-Point Types:The Floating-Point Types:

bool // Two values only: true or false

The Boolean Type:The Boolean Type:

char // Represents a single Unicode character

The Character Type:The Character Type:

 4

Declaring and Initializing Variables

Use the letlet keyword:

 5

Declaring and Initializing Variables

DefaultDefault Type Inference Type Inference

 6

Declaring and Initializing Variables

Type InferenceType Inference

The type of aa is deduced from that of bb,
which is explicitly annotated.

 7

Strong Type System

error[E0308]: mismatched types
 --> strong_type.rs:2:18
 |
2 | let a: f64 = 50;
 | ^^
 | |
 | expected f64, found integral variable
 | help: use a float literal: `50.0`
 |
 = note: expected type `f64`
 found type `{integer}`

 8

Immutability

A variable is immutable by default.A variable is immutable by default.

error[E0384]: cannot assign twice to immutable variable `a`
 --> immutability.rs:4:5
 |
3 | let a = 15;
 | - first assignment to `a`
4 | a = 30 // Error
 | ^^^^^^ cannot assign twice to immutable variable

OK (initialization)OK (initialization)

 9

Mutability

Use the mutmut keyword:

 10

Number Literals

 11

Operators

All operators are given on this page:All operators are given on this page:

https://doc.rust-lang.org/book/appendix-02-operators.html#operators

Note:Note: the ++++ and ---- operators are not available.

let r = c++;

https://doc.rust-lang.org/book/appendix-02-operators.html#operators

 12

Macros

Rust uses functions and Rust uses functions and macrosmacros..

Macros are really powerful, much more Macros are really powerful, much more
powerful than those of the C language, but powerful than those of the C language, but

also much more complicated to define.also much more complicated to define.
We will use them only.We will use them only.

Macros can be called in the same way as Macros can be called in the same way as
functions.functions.

Macros end with the “!”“!” symbol.

 13

Printing on the Terminal

Use println!() to print on the standard output.

See also https://doc.rust-lang.org/std/fmt/index.html

Hello World
2 + 3 = 5
2 + 3 = 5
c = A and d = 8

https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/fmt/index.html

 14

Printing on the Terminal

print!()print!() is equivalent to println()!println()! except
that a newline is not printed at the end of

the message.

eprinln!()eprinln!() and eprint!()eprint!() are equivalent to
println!()println!() and print!()print!() respectively except that
the message is printed on the standard error.

 15

Printing for Debugging

A macro for quick and dirty debugging: dbg!()

[dbg.rs:6] a = 2
[dbg.rs:7] b = 3
[dbg.rs:9] a + b = 5
[dbg.rs:10] c = 5

dbg.rsdbg.rs

https://doc.rust-lang.org/std/macro.dbg.html

 16

Type Conversions

3.14 as u8 = 3
8u8 as f64 = 8.0
'A' as u8 = 65
66 as char = 'B'
true as i64 = 1
false as u16 = 0

Use the as keyword to convert one type into another.

https://doc.rust-lang.org/std/keyword.as.html

 17

Shadowing

A variable can be shadowed in its scope:A variable can be shadowed in its scope:
● A new variable with the same name is created.
● The previous variable can no longer be accessed.

 18

Shadowing (Inner Block)

A variable can be shadowed in an inner block:A variable can be shadowed in an inner block:

a = 'A'
a = 'B'
a = 'A'

 19

Unused Variables

warning: unused variable: `a`
 --> unused_variables.rs:3:9
 |
3 | let a = 10; // Warning
 | ^ help: consider using `_a` instead
 |
 = note: #[warn(unused_variables)] on by default

 20

Constants

Use constconst instead of letlet.

Differences between constantsconstants and immutable variablesimmutable variables:
● No type inference for constants.
● Constants can be declared in the global scope.
● Constants must be initialized to a constant expression.
● Constants should have upper case names.

 21

Constants

 22

Tuples

Tuples are fixed-length collections of values of different types.Tuples are fixed-length collections of values of different types.

t = (
 "Hello",
 true,
 5
)
a = "Hello"
b = true
c = 5

 23

Statements and Expressions

Statements:Statements:
● Do not return values.
● Cannot be assigned to variables.

Expressions:Expressions:
● Return values.
● Can be assigned to variables.

Rust is an expression-based language.Rust is an expression-based language.
An expression evaluates something and returns the result.An expression evaluates something and returns the result.

 24

Statements and Expressions

Expr(5) Expr(1)

Expr(6)

Statement

The letlet keyword is a statement.
A statement can contain expressions.

A statement ends
with a semicolon.

 25

Statements and Expressions

A block returns the value of its last instruction:A block returns the value of its last instruction:
● If the last instruction is a statement, the block

returns an empty tuple, which means no value.
● Otherwise, it returns the value of the expression.

If you place a semicolon at the end of an expression, If you place a semicolon at the end of an expression,
this expression becomes a statement.this expression becomes a statement.

The symbol of an empty tuple is ()().

 26

Statements and Expressions

Block ending with an expressionBlock ending with an expression

A SemicolonA Semicolon

“x + 1;” is a statement.
The block returns ().

The expression is lost.

No SemicolonNo Semicolon

“x + 1” is an expression.

The block returns 6.

Block ending with a statementBlock ending with a statement

 27

Statements and Expressions

x = 5
x = 5
a = 6
b = ()

“x + 1” is lost and
() is returned.

“x + 1” is evaluated
and 6 is returned.

 28

Conditions

A conditioncondition is always a booleanboolean type.

a == 3

Returns either truetrue or falsefalse.

Same typeSame type

 29

The if Expression

General FormGeneral Form
if condition1
{
 // ...
}

else if condition2
{
 // ...
}

else
{
 // ...
}

The elseelse and else ifelse if blocks
are optional.

Multiple else ifelse if blocks are
possible.

 30

The if Expression

Conditional StatementConditional Statement

Conditional ExpressionConditional Expression

 31

The if Expression

Conditional StatementConditional Statement

Conditional ExpressionConditional Expression

 32

Conditional Loops (while)

while condition
{
 // ...
}

General FormGeneral Form

a = 0
a = 1
a = 2

ExampleExample

 33

Conditional Loops (for)

for var in iterator
{
 // ...
}

General FormGeneral Form

An iteratoriterator is a type specification.
We will study iterators in a further lesson.
For now, we will use simple kinds of iterators : RangesRanges

for var in range
{
 // ...
}

For this lessonFor this lesson

 34

Conditional Loops (for)

n = 0
n = 1
n = 2

n = 0
n = 1
n = 2
n = 3

 35

Conditional Loops (for)

n = 9
n = 6
n = 3
n = 0

n = 0
n = 3
n = 6
n = 9

n = 2
n = 1
n = 0

 36

Infinite Loops (loop)

a = 0
a = 1
a = 2
a = 3
... snip ...
a = 41302
a = 41303
^C

 37

break and continue

The breakbreak and continuecontinue instructions can
be used in loop bodies

(forfor, whilewhile, looploop)

● breakbreak: Terminates the loop.
● continuecontinue: Goes to the next iteration.

 38

loop and break

When used with looploop,
breakbreak can return a value.

a = 0
a = 1
a = 2
a = 3

a = 0
a = 1
a = 2
a = 3
r = 4

 39

Defining Functions

Hello, world!

Functions can be defined Functions can be defined
anywhere.anywhere.

 40

Passing Arguments to Functions

5 + 3 = 8
2 + 7 = 9

Types of parameters must be specified.Types of parameters must be specified.

 41

Passing Arguments to Functions

Type InferenceType Inference

5 + 3 = 8

 42

Passing Arguments by Value

By default, arguments are passed by value.By default, arguments are passed by value.

a = 10
b = 20
a = 10
b = 20

 43

Passing Arguments by Reference

a = 10
b = 20
a = 20
b = 10

 44

Returning Values from Functions

Types of return values must be specified.Types of return values must be specified.

200 + 100 = 300

Return values are those of the blocks.Return values are those of the blocks.

No semicolon!No semicolon!

 45

Early Returns (return)

ExampleExample

 46

Function Signatures

A function signature contains the fnfn
keyword, the name of the function, all
information about the function itself, its

parameters and its return values.

For instance:

fn div(a: u64, b:u64) -> u64

is the function signature of div()div().

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

