Practical Programming

Rust : X
Compiling and Running

®

David Bouchet

david.bouchet.epita@gmail.com

Your First Program

hello.rs

fn main() {
println!("Hello, world!");
}

S s

hello.rs

S rustc hello.rs
S s

hello hello.rs

S ./hello

Hello, world!

Rust's Compiler

Rust's compiler Is ruste.

To see all of its options:

rustc --help

or
https://doc.rust-lang.org/rustc/command-line-arguments.html

But we don’t usually use rustc directly!

https://doc.rust-lang.org/rustc/command-line-arguments.html

Cargo

Cargo is Rust's build system and package manager.

It checks, compiles, executes and tests your code.

It handles packages and dependencies.

Creating a New Package

The cargo new command creates a new package.

S s

S cargo new hello
S s

hello

S tree hello/
hello/

— Cargo.toml
L— src

L— main.rs

1 directory, 2 files

Cargo.toml

This configuration file contains information
about the package and its dependencies.

S tree hello/

hello/
— Cargo.toml ————t=—3p-

— Src
L— main.rs

1 directory, 2 files

[package]
name = "hello"

version = "0.1.0"
authors = ["Your Name <you@example.com>"]

edition = "2018"

[dependencies]

The src Directory

The sre directory must contain all the source files.
A default main file is generated.

S tree hello/
hello/

— Cargo.toml Default main file:
— SfcC fn main() {

L— main.rs L —— println!("Hello, world!");
}

1 directory, 2 files

Version Control System (VCS)

The cargo new command initializes a Git repository.

S cd hello/
S s
Cargo.toml src
S ls -a
Cargo.toml .git .gitignore src

Use cargo new --vcs none to disable this option:

S cargo new --vcs none hello

Or, create a “~/.cargo/config” file:

[cargo-new]
vcs = "none”

Compiling

The cargo build command generates an executable file.

$ cargo build
Compiling hello v0.1.0 (/home/david/hello)
Finished dev [unoptimized + debuginfo] target(s) in 0.23s

S Us
Cargo.lock Cargo.toml src target

Two new items:

» The Cargo.lock file.
* The target directory.

Cargo.lock

“This file keeps track of the exact versions of
dependencies in your project.” ,

“You won't ever need to change this file manually;
Cargo manages its contents for you.” |

(1) https://doc.rust-lang.org/book/ch01-03-hello-cargo.html#building-and-running-a-cargo-project

https://doc.rust-lang.org/book/ch01-03-hello-cargo.html#building-and-running-a-cargo-project

The target directory

This directory contains the binary and intermediate files
generated by the compiler.

By default, the debug mode is used.

ne compilation is faster.

ne execution is slower.

ne executable file contains some debug information.

S 1s target/

debug

S 1s target/debug/

build deps examples hello hello.d incremental native
S target/debug/hello # We can execute the program this way
Hello, world! # but it i1s not so common.

Running

The cargo run command compiles and runs your code.

S cargo run
Compiling hello v0.1.0 (/home/david/hello)
Finished dev [unoptimized + debuginfo] target(s) in 0.44s
Running "target/debug/hello’
Hello, world!

You can pass some arguments to the executable file.
Use the ‘--’ separator: cargo run -- <list of arguments>

Example with three arguments:
$ cargo run -- argl arg2 arg3

Checking

The cargo check command checks your code.

S cargo check

Checking hello v0.1.0 (/home/david/hello)

Finished dev [unoptimized + debuginfo] target(s) in 0.23s
S ls target/debug/
build deps examples 1incremental native

cargo check and cargo build are similar:
» cargo build generates an executable file.

» cargo check does not generate any object or
executable files.

——= cargo check is faster.

Cleaning

The cargo clean command cleans your package directory.
It deletes your target directory.

S s

Cargo.lock Cargo.toml src target
S cargo clean

S s

Cargo.lock Cargo.toml src

Building for Release

“When your project is finally ready for release,
you can use cargo build --release to compile it

with o

This command wil

otimizations.

create an executable In

target/release instead of target/debug.

The optimizations make your Rust code run
faster, but turning them on lengthens the time it

takes for your program to compile.”(1

)

(1) https://doc.rust-lang.org/book/ch01-03-hello-cargo.html#building-for-release

https://doc.rust-lang.org/book/ch01-03-hello-cargo.html#building-for-release

Unchanged and Updated Files

Cargo is smart.
It compiles files that have been updated only.
It does not compile unchanged file.

S cargo clean
S cargo build
Compiling hello v0.1.0 (/home/david/hello)
Finished dev [unoptimized + debuginfo] target(s) in 0.44s
S cargo build
Finished dev [unoptimized + debuginfo] target(s) in 0.01s

Cargo’s Help: cargo -h

$ cargo -h
Rust's package manager

USAGE:
cargo [OPTIONS] [SUBCOMMAND]

OPTIONS:
-V, --version Print version info and exit
--list List installed commands
--explain <CODE> Run ‘rustc --explain CODE’
-v, --verbose Use verbose output (-vv very verbose/build.rs output)

. sSnip ...

Some common cargo commands are (see all commands with --list):
build Compile the current package
check Analyze the current package and report errors, but don't build object files
clean Remove the target directory
doc Build this package's and its dependencies' documentation
new Create a new cargo package
init Create a new cargo package in an existing directory

. sSnip ...

See 'cargo help <command>' for more information on a specific command.

Cargo’s Help: cargo help <command>

$ cargo help new
cargo-new

Create a new cargo package at <path>

USAGE:
cargo new [OPTIONS] <path>

OPTIONS:

--registry <REGISTRY>
--vcs <V(CS>
--bin
--11b
--edition <YEAR>
--name <NAME>

-v, --verbose

-q, --quiet
--color <WHEN>
--frozen
- -locked

-Z <FLAG>...

-h, --help

ARGS:
<path>

Registry to use

Initialize a new repository for the given version ...
Use a binary (application) template [default] ...

Use a library template

Edition to set for the crate generated

Set the resulting package name, defaults to the ...
Use verbose output (-vv very verbose/build.rs output)
No output printed to stdout

Coloring: auto, always, never

Require Cargo.lock and cache are up to date

Require Cargo.lock is up to date

Unstable (nightly-only) flags to Cargo, see ...
Prints help information

Crates

A package contains one or more crates.

A crate Is either a binary crate or a library crate:
* A binary crate generates an executable file.
* A library crate generates a library.

A package can contain:
* Any number of binary crates.
* And zero library crates or just one.

Binary Crates

A package contains a binary crate when
the srec directory contains a main.rs file.

The cargo new instruction generates a
binary crate by default.

cargo new hello

cargo new --bin hello

Binary Crates

cargo new hello

l

The name of the package is hello.
The name of the binary crate is hello.
src/main.rs is the crate root.

Multiple Binary Crates

A package can contain multiple binary crates.
Use the src/bin/ directory.

S tree

— (Cargo. lock
— (Cargo.toml

— src
— bin /
— bye.rs

— morning.rs —
— mailn.rs

main.rs \

bye.rs

fn main() {
println!("Good bye, world!");
}

morning.rs

fn main() {
println!("Good morning, world!");
}

fn main() {
println!("Hello, world!");
}

Multiple Binary Crates

This package has three crates.

S tree

— Cargo. lock
— (Cargo.toml The "bye" crate.

— SrC
— bin /
— bye.rs

— morning.rs ——=> The “morning” crate.

— Main.rs

N

The *hello” crate (the crate root).

Multiple Binary Crates

cargo build --bin hello

cargo build --bin bye

cargo build --bin morning

cargo build --bins

cargo build

The same goes for cargo check.

—= Builds hello (main.rs)

—= Builds bye (bye.rs)

——= Builds morning (morning.rs)

\
/

Builds all crates

S tree

— Cargo. lock

— Cargo.toml

— src

— bin

— bye.rs

— morning.rs
— main.rs

Multiple Binary Crates

$ cargo run

error: cargo run requires that a package only have one
executable; use the "--bin’ option to specify which one to run

available binaries: hello, morning, bye

$ cargo run -q --bin hello

Hello, world!

$ cargo run -q --bin bye

Good bye, world!

$ cargo run -q --bin morning

Good morning, world! $ tree

Cargo. lock

— Cargo.toml

— src

— bin

— bye.rs

— morning.rs
— mailn.rs

-q is the “quiet” option.
It prints only the output of the executable file.

Library Crates

A package contains a binary crate when
the sre¢ directory contains a lib.rs file.

cargo new --Llib mylib

l

The name of the package is mylib.
The name of the library crate is mylib.
src/lib.rs is the crate root.

Library Crates

S cargo new --1lib mylib
Created library 'mylib’ package
S s
mylib
S tree mylib/
mylib/
— Cargo.toml
— Src Default lib file:

L— 1lib.rs ——— [#[cfg(test)]
mod tests {
#[test]
fn 1t_works() {
assert _eq!(2 + 2, 4);
}

1 directory, 2 files

}

Library Crates

A library crate can be built, checked and tested
but not run.

A package can contain a library crate and
multiple binary crates.

A library crate can be used by the binary crates
of the same package and also by any external
library or binary crates.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

