
1

Practical Programming

POSIX ThreadPOSIX Thread
ProgrammingProgramming

David BouchetDavid Bouchet

david.bouchet.epita@gmail.com

2

Threads?

● A process can have more than one
execution flow at a time.

● Threads are light-weight processes sharing
the same address space.

● Each thread has its own stack along with its
own execution flow.

3

Threads?

Mono-ThreadedMono-Threaded Multi-ThreadedMulti-Threaded

Source: https://computing.llnl.gov/tutorials/pthreads/

4

Threads?

Source: https://randu.org/tutorials/threads/

5

Multi-Threading Libraries

● POSIX Threads (pthread)POSIX Threads (pthread)
● SDL, BOOST
● C11 API (need better support)
● Higher-level parallelism: Intel’s TBB, OpenMP

6

Compiling POSIX Threads

● Require compiler option -pthread-pthread

● Require header “pthread.h”“pthread.h”

7

Creating Threads

On success, pthread_create()pthread_create() returns 0;
On error, it returns an error number, and the

contents of *thread are undefined.

pthread_create(3)

https://manpages.debian.org/stretch/manpages-dev/pthread_create.3.en.html

8

Creating Threads – Example

Main thread
My thread
My thread
Main thread
My thread
My thread
Main thread
My thread
My thread
Main thread
My thread
My thread
Main thread
My thread
My thread
Main thread
My thread
My thread
Main thread
My thread
My thread
^C

9

Creating Threads – Example

Main thread
My thread 1
My thread 2
Main thread
My thread 2
My thread 1
My thread 1
My thread 2
Main thread
My thread 1
My thread 2
Main thread
My thread 1
My thread 2
Main thread
My thread 1
Main thread
My thread 2
^C

The The
execution execution

order order
cannot be cannot be
predicted.predicted.

10

Terminating Processes and Threads

Main thread (start)
My thread
My thread
My thread
My thread
My thread
Main thread (return/exit)

When the main thread ends (by using return or the When the main thread ends (by using return or the
exit()exit() function), it causes the termination of the process function), it causes the termination of the process
and all of its threads.and all of its threads.

11

Terminating Processes and Threads

Main thread
My thread 2 (start)
My thread 1
Main thread
My thread 1
Main thread
My thread 1
Main thread
My thread 1
Main thread
My thread 1
My thread 2 (exit)

When any thread of a When any thread of a
process is ended by the process is ended by the
exit()exit() function, it causes function, it causes
the termination of the the termination of the
process and all of its process and all of its
threads (main thread threads (main thread
included).included).

12

Terminating Threads Only

To terminate a thread (and not the process).To terminate a thread (and not the process).

● You can use the returnreturn instruction (not in the
main thread, or it causes the termination of
the process).

● You can use the pthread_exit()pthread_exit() function
(even in the main thread).

13

Terminating Threads Only

Main thread
My thread 1
My thread 2 (start)
Main thread
My thread 1
Main thread
My thread 1
Main thread
My thread 1
Main thread
My thread 1
My thread 2 (pthread_exit)
My thread 1
Main thread
My thread 1
^C

14

Terminating Threads Only

Main thread (start)
My thread 1
My thread 2
My thread 1
My thread 2
My thread 2
My thread 1
My thread 2
My thread 1
My thread 2
My thread 1
Main thread (pthread_exit)
My thread 2
My thread 1
My thread 2
My thread 1
^C

15

Passing Arguments to Threads

The fourth argument of the pthread_create()pthread_create()
function is passed to the thread function.

16

Passing Arguments to Threads

My thread 0
My thread 1
My thread 2
My thread 0
My thread 1
My thread 2
My thread 0
My thread 2
My thread 1
My thread 0
My thread 2
My thread 1
My thread 0
My thread 2
My thread 1
^C

Example with the Example with the longlong type: type:

17

Passing Arguments to Threads

My thread 1
My thread 2
My thread 3
My thread 1
My thread 3
My thread 2
My thread 1
My thread 2
My thread 3
My thread 1
My thread 2
My thread 3
^C

Example with strings:Example with strings:

18

Passing Arguments to Threads

z = 16 + 43i
z = 16 + 43i
z = 16 + 43i
z = 16 + 43i
z = 16 + 43i
z = 16 + 43i
z = 16 + 43i
z = 16 + 43i
^C

Example with Example with structstruct and dynamic allocation: and dynamic allocation:

19

Joining Threads

The following function can be used The following function can be used
to wait for a specific thread and/or to wait for a specific thread and/or
to return a value from this thread:to return a value from this thread:

int pthread_join(pthread_t thread, void **retval);

pthread_join(3)

Any thread can join with any other thread in the process.

https://manpages.debian.org/stretch/manpages-dev/pthread_join.3.en.html

20

Waiting for Threads

Main thread starts.
Main thread is waiting for thread 1...
Thread 1 starts.
Thread 2 starts.
Thread 1 ends.
Main thread is waiting for thread 2...
Thread 2 ends.
Main thread ends.

21

Returning Values from Threads

The return value is: 0.000000

The wrong way!The wrong way!

22

Returning Values from Threads

The return value is: 3.140000

The right way!The right way!

23

Returning Values from Threads

The return value is: 3.140000

Another way...Another way...

24

Returning Values from Threads

|4 + 8i| = 8.944272

Another way with a structure...Another way with a structure...

25

Detaching Threads

A thread can be detached when:A thread can be detached when:
● We do not need its return value.
● We do not need to wait for it.

In other words, a thread can be detached
when we do not need to call the

phtread_join()phtread_join() function for this thread.

A thread can be either joinablejoinable or detacheddetached.
By default, it is joinable.

26

Detaching Threads

Can’t we just ignore its return value and
never call the pthread_join()pthread_join() function?

But why a thread should be detached?But why a thread should be detached?

27

Detaching Threads

Let us try this first program:Let us try this first program:

thread_count = 10000
thread_count = 20000
thread_count = 30000
thread_count = 32754

32,754 threads have been created32,754 threads have been created before the phtread_create()phtread_create() function failed.

(This number may change according to your system.)

28

Detaching Threads

To detach a thread, we can use the To detach a thread, we can use the pthread_detach(3)pthread_detach(3) function. function.

Let us try this second program:Let us try this second program:

thread_count = 10000
thread_count = 20000
thread_count = 30000
...
thread_count = 980000
thread_count = 990000
thread_count = 1000000
thread_count = 1010000
thread_count = 1020000
^C

The phtread_create()phtread_create() function never fails.

(When we stop the program, more than 1,000,000 threads have been created1,000,000 threads have been created.)

https://manpages.debian.org/stretch/manpages-dev/pthread_detach.3.en.html

29

Detaching Threads

In the first program,In the first program,
why is the number of joinable threads limited?why is the number of joinable threads limited?

Because the resources used by a joinable thread (i.e. its
stack, its return value) are released only when the

pthread_join()pthread_join() function is called for this thread.

[…] Either pthread_join(3) or pthread_detach() should be called for each
thread that an application creates, so that system resources for the
thread can be released. (But note that the resources of all threads are
freed when the process terminates.) [...]

pthread_detach(3)pthread_detach(3)::

https://manpages.debian.org/stretch/manpages-dev/pthread_detach.3.en.html

30

Concurrent Memory Accesses

global_variable = 667527
global_variable = 184489
global_variable = 331602
global_variable = 476379
global_variable = 670061
global_variable = 969944
global_variable = 596966
global_variable = 1000000
global_variable = 619181
global_variable = 488361

Let us run 10 times the following code:Let us run 10 times the following code:

The expected value of global_variableglobal_variable is 1,000,0001,000,000.
However, this value is always different.

Why?Why?

31

Concurrent Memory Accesses

In the example: global_variable++

1.Fetch value from global_variable
2.Compute global_variable + 1
3.Write back result to global_variable

Almost all operations are not atomicAlmost all operations are not atomic

Modifications done to memory location Modifications done to memory location
between steps 1 and 3 are lost.between steps 1 and 3 are lost.

32

Critical Section

A section of code is said to be a
critical sectioncritical section if the execution of
this section cannot be interrupted

without loss of consistency or
determinism.

33

Mutex

Two basic operations: locklock and unlockunlock.

LockLock: if the mutexmutex is free, passes and takes it,
otherwise waits until the actual owner of the
mutexmutex unlocks it.

UnlockUnlock: gives back the mutexmutex.

Abstract entity used to enforce mutual exclusion.Abstract entity used to enforce mutual exclusion.

Also trylocktrylock: Same as lock but does not wait.

34

Mutex – Type and Functions

// Declaration and Initialization
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

// Lock / Unlock
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

// Destruction
int pthread_mutex_destroy(pthread_mutex_t *mutex);

35

Mutex – Usage

Shared mutex variable: m

Thread code:
No Critical Section
Lock(m)

Critical SectionCritical Section
Unlock(m)
No Critical Section

36

Mutex – Example

global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000
global_variable = 1000000

Let us run the following code 10 times:Let us run the following code 10 times:

The expected value of global_variableglobal_variable is 1,000,0001,000,000.
Now, with the mutexmutex, this value is always 1,000,0001,000,000.

37

Deadlock (1)

Thread 1Thread 1 has locked Mutex 1Mutex 1

Thread 2Thread 2 has locked Mutex 2Mutex 2

Thread 1Thread 1 is waiting for Mutex 2Mutex 2

Thread 2Thread 2 is waiting for Mutex 1Mutex 1

38

Deadlock (2)

39

Deadlock (3)

Thread 1: Waiting for mutex 1.
Thread 1: Mutex 1 locked.
Thread 2: Waiting for mutex 2.
Thread 2: Mutex 2 locked.
Thread 2: Waiting for mutex 1.
Thread 1: Waiting for mutex 2.
^C

40

Condition Variables

Condition variables are another way to synchronize threads.Condition variables are another way to synchronize threads.

➔ A thread waits for a condition to be met.
➔ Another thread signals that the condition has been met.

A condition variable is always paired with a mutex.A condition variable is always paired with a mutex.

41

Condition Variables – Type and Functions

// Declaration and Initialization
pthread_cont_t cont = PTHREAD_COND_INITIALIZER;

// Waiting for a condition to be met
int pthread_cond_wait(pthread_cond_t *cond);

// Signaling that a condition has been met
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

// Destruction
int pthread_cond_destroy(pthread_cond_t *cond);

42

Condition Variables – In theory

Thread 1:

Do Work

Lock(m)

Wait(c)

Unlock(m)

Do Work

Shared mutex variable: m
Shared condition variable: c

Thread 2:

Do Work

Lock(m)

Signal(c)

Unlock(m)

Do Work

43

Condition Variables – In Practice

Thread 1:

Do Work

Lock(m)

While(!condition)

Wait(c)

Unlock(m)

Do Work

Shared mutex variable: m
Shared condition variable: c

Thread 2:

Do Work

Lock(m)

Signal(c)

Unlock(m)

Do Work

44

Condition Variables – Usage

Why should I wait for the condition in a Why should I wait for the condition in a whilewhile loop? loop?

➔ To prevent a bug:To prevent a bug: the pthread_cond_signal()pthread_cond_signal() function
was executed by mistake.

➔ The The pthread_cond_wait()pthread_cond_wait() function can return even if the function can return even if the
condition is not met:condition is not met: this behavior is allowed by the
pthread library.

45

Condition Variables – Example

stock = 9
stock = 8
stock = 7
stock = 6
stock = 5
stock = 4
stock = 3
stock = 2
stock = 1
SM: stock < 2

46

Condition Variables – Broadcast

Use pthread_cond_broadcast()pthread_cond_broadcast() instead of
phtread_cond_signal()phtread_cond_signal() when more than
one thread are waiting for the same
condition.

47

Condition Variables – Broadcast

stock = 9
stock = 8
stock = 7
stock = 6
stock = 5
stock = 4
stock = 3
stock = 2
stock = 1
SM1: stock < 2
SM2: stock < 2

48

Why Condition Variables?

Why should we use condition variables?Why should we use condition variables?
Can’t we use Can’t we use whilewhile loops only? loops only?

stock = 9
stock = 8
stock = 7
stock = 6
stock = 5
stock = 4
stock = 3
stock = 2
stock = 1
SM: stock < 2

What is wrong here?What is wrong here?

49

Why Condition Variables?

Why should we use condition variables?Why should we use condition variables?
Can’t we use Can’t we use whilewhile loops only? loops only?

stock = 9
stock = 8
stock = 7
stock = 6
stock = 5
stock = 4
stock = 3
stock = 2
stock = 1
SM: stock < 2

What is wrong here?What is wrong here?

Too Much Resource Consuming

Too Much Resource Consuming

50

Semaphores

POSIX semaphores allow processes and threads to synchronize POSIX semaphores allow processes and threads to synchronize
their actions.their actions.

A semaphore is an integer whose value is never allowed to fall A semaphore is an integer whose value is never allowed to fall
below zero. below zero.

Two operations can be performed on semaphores:
● increment the semaphore value by one (sem_post(3)sem_post(3));
● and decrement the semaphore value by one (sem_wait(3)sem_wait(3)).

If the value of a semaphore is currently zero, then a sem_wait(3)sem_wait(3)
operation will block until the value becomes greater than zero.

sem_overview(7)

https://manpages.debian.org/stretch/manpages/sem_overview.7.en.html
https://manpages.debian.org/stretch/manpages/sem_overview.7.en.html

51

Semaphores – Type and Functions

// Initialization (for threads of the same process)
int sem_init(sem_t *sem, 0, unsigned int value);

// Incrementing and Decrementing
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

// Destruction
int sem_destroy(sem_t *sem);

52

Semaphores – Example

What does What does
this this

program program
do?do?

53

Semaphores – Example

What does What does
this this

program program
do?do?

It creates 32 threads It creates 32 threads
and limits the and limits the

number of threads number of threads
that are running to 3.that are running to 3.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

