$_{ m QCM}^{ m Algo}$

1. la longueur d'un chemin est?
(a) éventuellement nulle.
(b) le nombre d'arcs qui le composent.
(c) le nombre de sommets qui le composent.
(d) le nombre d'arêtes qui le composent.
2. L'algorithme de <i>Tarjan</i> sert à?
(a) déterminer les composantes connexes d'un graphe non orienté.
b déterminer les composantes fortement connexes d'un graphe orienté.
(c) calculer la fermeture transitive d'un graphe.
(d) parcourir les arbres des forêts.
3. Un graphe non orienté de n sommets peut être connexe à partir de?
(a) $n-1$ arêtes.
(b) n arêtes.
(c) $n+1$ arêtes.
4. Pour déterminer les composantes fortement connexes d'un graphe orienté on peut utiliser?
(a) l'algorithme de $Tarjan$.
(b) l'algorithme de Warshall.
\bigcirc l'algorithme de $Kosaraju$.
(d) les algorithmes Trouver et Réunir
5. Une chaîne qui ne contient pas plusieurs fois un même sommet est?
(a) élémentaire.
(b) optimale.
(c) plus courte.
(d) un chemin.
(d) di oloniali
6. Dans la forêt couvrante associée au parcours en profondeur d'un graphe orienté G , les arcs $x \rightarrow y$ tels qu'il n'existe pas de chemin entre x et y sont appelés?
a arcs couvrants.
(b) arcs en arrière.
(c) arcs en Avant.
d arcs croisés.

7. L'algorithme de Warshall permet de?

- (a) calculer la fermeture transitive d'un graphe non orienté.
- (b) calculer la fermeture transitive d'un graphe orienté.
- (c) parcourir un graphe en largeur.
- (d) déterminer si un graphe est complet.

8. Le numéro d'ordre suffixe de rencontre d'un sommet x, dans la forêt couvrante associée au parcours en profondeur d'un graphe orienté G?

- (a) symbolise la première rencontre du sommet x.
- (b) symbolise la dernière rencontre du sommet x.
- (c) symbolise la rencontre d'un arc incident à x vers l'intérieur.
- (d) symbolise la rencontre d'un arc incident à x vers l'extérieur.

9. Les algorithmes Trouver et Réunir nécessitent?

- (a) un vecteur de pères.
- (b) un vecteur de fils.
- (c) un vecteur de frères.

10. L'algorithme de Kosaraju sert à?

- (a) déterminer les composantes connexes d'un graphe non orienté.
- (b) déterminer les composantes fortement connexes d'un graphe orienté.
- (c) calculer la fermeture transitive d'un graphe.
- (d) parcourir les arbres des forêts.

QCM N°9

lundi 4 février 2019

Question 11

Soient E un \mathbb{R} -ev, $\varphi: E \times E \longrightarrow \mathbb{R}$ bilinéaire, $(x, y, z, t) \in E^4$ et $(\lambda, \mu) \in \mathbb{R}^2$. Alors

a.
$$\varphi(x + \lambda y, z + \mu t) = \varphi(x, y) + \lambda \mu \varphi(y, t)$$

(b)
$$\varphi(x + \lambda y, z + \mu t) = \varphi(x, z) + \mu \varphi(x, t) + \lambda \varphi(y, z) + \lambda \mu \varphi(y, t)$$

- c. φ est linéaire
- d. rien de ce qui précède

Question 12

Soit (E,<,>) un espace préhilbertien réel. Alors le théorème de Cauchy-Schwarz dit que

a.
$$\forall (x,y) \in E^2 \quad \big| < x,y> \big| \leqslant < x,x> < y,y>$$

c.
$$\forall (x,y) \in E^2$$
 $\sqrt{\left| \langle x,y \rangle \right|} \leqslant \langle x,x \rangle \langle y,y \rangle$

d.
$$\forall (x,y) \in E^2 \quad \left| \langle x,y \rangle \right| \leqslant \left(\langle x,x \rangle \right)^2 \left(\langle y,y \rangle \right)^2$$

Question 13

Soient $n \in \mathbb{N}$ tel que $n \ge 2$, $E = \mathcal{M}_n(\mathbb{R})$ et $\varphi : E \times E \longrightarrow \mathbb{R}$ définie pour tout $(A, B) \in E^2$ par $\varphi(A, B) = \operatorname{tr}({}^t\!AB)$ où ${}^t\!A$ désigne la transposée de A.

Alors

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$
- \bigcirc φ est symétrique
- $\bigcirc \varphi$ est positive
- $\bigodot \varphi$ est définie
- e. rien de ce qui précède

Question 14

Soient (E,<,>) un espace préhilbertien réel et $(x,y)\in E^2$. Le théorème de Minkowski dit que

a.
$$< x + y, x + y > \le < x, x > + < y, y >$$

b.
$$\sqrt{\langle x + y, x + y \rangle} \le \sqrt{\langle x, x \rangle + \langle y, y \rangle}$$

$$(C) \sqrt{\langle x+y, x+y \rangle} \leqslant \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$$

d.
$$\sqrt{\langle x+y,x+y\rangle} \leqslant \sqrt{\langle x,x\rangle} \sqrt{\langle y,y\rangle}$$

e. rien de ce qui précède

Question 15

Soit E l'espace des fonctions continues de [0,1] dans $\mathbb R$ et $\varphi: \left\{ \begin{array}{ccc} E \times E & \longrightarrow & \mathbb R \\ & (f,g) & \longmapsto & \int_0^1 f(t)g(t)\mathrm{d}t \end{array} \right.$. Alors φ est un produit scalaire sur E.

- a. vrai
- b. faux

Question 16

Soit f continue et positive sur $[1, +\infty[$ telle que $tf(t) \to 0$ quand $t \to +\infty$. Alors

- a. $\int_{1}^{+\infty} f(t)dt$ converge
- b. $\int_{1}^{+\infty} f(t) dt$ diverge
- C.) on ne peut rien dire sur la nature de $\int_1^{+\infty} f(t) dt$

Question 17

Soit f continue et positive sur $[1, +\infty[$ telle que $tf(t) \to +\infty$ quand $t \to +\infty$. Alors

- a. $\int_{1}^{+\infty} f(t)dt$ converge
- $\int_{1}^{+\infty} f(t) dt$ diverge
 - c. on ne peut rien dire sur la nature de $\int_1^{+\infty} f(t) \mathrm{d}t$

Question 18

Soit f continue et positive sur $[1, +\infty[$ telle que $t^2f(t) \to +\infty$ quand $t \to +\infty$. Alors

- a. $\int_{1}^{+\infty} f(t)dt$ converge
- b. $\int_{1}^{+\infty} f(t) dt$ diverge
- C. on ne peut rien dire sur la nature de $\int_1^{+\infty} f(t) dt$

Question 19

- b. $\int_0^{+\infty} e^t dt$ converge et est égale à -1
- c. $\int_0^{+\infty} e^t dt$ converge et est égale à 1
- d. rien de ce qui précède

Question 20

b.
$$\int_{-\infty}^{+\infty} t \, dt$$
 converge car $\int_{-x}^{x} t \, dt$ admet une limite quand x tend vers $+\infty$.

$$c. \int_{-\infty}^{+\infty} t \, \mathrm{d}t = 0$$

d. rien de ce qui précède

Choose the one correct answer.

- 21. If it had snowed yesterday, the mayor would have closed the small streets. This means:
 - (a.) It did not snow yesterday.
 - b. It snowed yesterday.
 - c. We cannot know whether it snowed or not.
 - d. None of the above.
- 22. If I had a bicycle and some energy, I would cycle to work today. This means:
 - a. I have a bicycle and energy right now.
 - **b.** I want to cycle to work today.
 - c. I am not going to work today.
 - d. None of the above.
- 23. Ann would have made it to class on time this morning if the bus hadn't been late. This means:
 - a. Ann tried to make it to class on time.
 - b. Ann made it to class on time.
 - c. The bus was late.
 - d. A and C.
- 24. If I didn't have any friends, I would be lonely. This means:
 - a. You are lonely.
 - (b.) You have friends.
 - c. You have at least a few friends but you can't always count on them.
 - d. B and C.
- 25. Your friend was in the Paris demonstration last week. You didn't know that, so you didn't join her.
 - a. If you had known that she was in the demonstration, you would have joined her.
 - b. If you knew that she was in the demonstration, you would joined her.
 - c. If you had known that she was in the demonstration, you would not have joined her.
 - d. If you had been knowing that she was in the demonstration, you would have joined her.
- 26. You should tell your father exactly what happened.
 - a. If I was you, I will tell him the truth as soon as possible.
 - (b.) If I were you, I would tell him the truth as soon as possible.
 - c. If I was you, I would not tell him the truth as soon as possible.
 - d. If I were you, I won't tell him the truth as soon as possible.

It has been a long drought. It has not rained for over a month. (Numbers 27 and 28)

- 27. Choose the one correct sentence.
 - a. If it doesn't rain soon, a lot of crops die.
 - b. If it didn't rain soon, a lot of crops die.
 - (c.) If it doesn't rain soon, a lot of crops will die.
 - d. If it isn't raining soon, a lot of crops will die.

- 28. Choose the one correct sentence.
 - a. If the crops die, many people would go hungry this coming winter.
 - b. If the crops died, many people will go hungry this coming winter.
 - (c.) If the crops die, many people will go hungry this coming winter.
 - d. If the crops had died, many people would have gone hungry this coming winter.

Mary: Since I broke my foot, I have not been able to get to the basement to wash my clothes. (Numbers 29 and 30)

- 29. Choose the **one** correct response from Mary's friend.
 - a. Why didn't you say something? I would come over and wash them for you.
 - b. Why didn't you say something? I would have come over and wash them for you.
 - c. Why didn't you say something? I would came over and washed them for you.
 - d. Why didn't you say something? I would have come over and washed them for you.
- 30. Choose Mary's comment to her friend.
 - (a.) I know you would have come over right away if I had called.
 - b. I know you would have come over right away if I have called.
 - c. I know you would come over right away if I called.
 - d. I know you would have come over right away if I called.

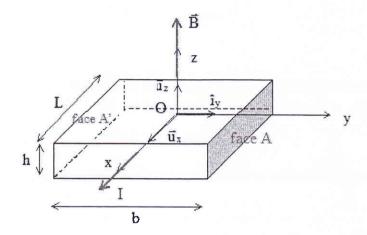
OC MCQ 3
31. The generation of the parents of the current generation is referred to as
A) Digital Natives
B) Digital Immigrants
C) Digital Learners
D) Digital Experts
32. The idea of a burning platform is
A) When the cost of staying where you are is the same as the cost of moving to something different
B) When the cost of staying where you are becomes less than the cost of moving to something different.
When the cost of staying where you are becomes more than the cost of moving to something different.
D) When you are standing on a burning platform.
33. The four principles for openness are
(A) collaboration, transparency, sharing, empowerment
B) cooperation, transparency, power, movement
C) collaboration, sharing, globalisation, empowerment
D) sharing, mobility, collaboration, transparency
34. The fact of having the boundaries of organisations open and porous is an example of
A) fluidity
B)collaboration
C) transformation
D) openness
35. The fact of having communication of pertinent information to employees, customers, business partners etc. is an example of
A)transparency
B) communication
C) openness
D) instituitions
36 is about giving up assets and intellectual property.
A) Transparency
B) Collaboration
C) Openness
(D) Sharing

37. The big trouble in the pharmaceutical industry can only be solved by	
A) being transparent about their production	
B) sharing clinical trial data	
C) saving all data	
D) conserving all data	
38. During the Tunisian revolution, the social media was used as (in the example given in th talk)	e
A) a communication tool	
B) a tool of self-defense	
C) a tool of collaboration	
D) a tool of rebellion	
39. The printing press gave us access to recorded knowledge and the internet gives us access to	
A) information	
B) knowledge	
C) the intelligence contained in the brain of other people on a global basis	
Dall of the above.	
40. The analogy that the speaker took to prove the four principles of openness is	
A) an example of bees	
B) an example of starlings	
C) an example of internet	
D) None of the above	

Q.C.M n°9 de Physique

41- Une charge q se déplace à une vitesse \vec{v} dans un champ magnétique \vec{B} . La force magnétique $\overrightarrow{F_m}$ qui s'exerce sur cette charge s'écrit :

a)
$$\overrightarrow{F_m} = q\vec{v} \cdot \vec{B}$$


$$(b)\overrightarrow{F_m} = q\vec{v} \wedge \vec{B} \qquad c) \overrightarrow{F_m} = q\vec{B}$$

c)
$$\overrightarrow{F_m} = q\overrightarrow{B}$$

42- Parmi les affirmations suivantes, laquelle est vraie?

- a) $\overrightarrow{F_m}$ est colinéaire à \vec{v} . b) $\overrightarrow{F_m}$ est indépendante de \vec{v} . c) Le travail de $\overrightarrow{F_m}$ est nul.

43- Un matériau conducteur d'axe (Ox) est placé dans un champ magnétique \vec{B} orthogonal à l'axe (Ox), comme représenté ci-dessous :

En présence de ce champ \vec{B} apparaît un champ électrique, le champ électrique de Hall $\overrightarrow{E_H}$. On note \overrightarrow{v} la vitesse moyenne des électrons, m_e - leur masse et n_e - leur densité. La norme de $\overrightarrow{E_H}$ à l'équilibre est donnée par :

a)
$$E_H = \frac{vB}{m}$$

b)
$$E_H = \frac{v}{R}$$

44- En utilisant les notations du schéma et les caractéristiques du conducteur de la question 43, la différence de potentiel (positive) entre les faces A et A' s'écrit :

(a)
$$\Delta V_H = \frac{IB}{e.n_e-.h}$$
 b) $\Delta V_H = \frac{IB}{e.n_e-}$ c) $\Delta V_H = \frac{IB}{e.n_e-.m}$

b)
$$\Delta V_H = \frac{IB}{e.n_e}$$

c)
$$\Delta V_H = \frac{IB}{e.n_e-.m}$$

45- On s'intéresse au mouvement d'un électron de masse m, de charge -e et dont la vitesse initiale $\overrightarrow{v_0}$ est non nulle. Soumis à un unique champ magnétique \overrightarrow{B} , son mouvement est circulaire de rayon R et sa pulsation ω est donnée par :

$$\omega = \frac{eB}{m}$$

(a)
$$\omega = \frac{eB}{m}$$
 b) $\omega = \frac{eB}{m \cdot v_0}$ c) $\omega = \frac{v_0 B}{e}$

c)
$$\omega = \frac{v_0 B}{e}$$

46- Le rayon R (question 45) a alors pour expression :

a)
$$R = \frac{eB}{m.v_0}$$

a)
$$R = \frac{eB}{m.v_0}$$
 b) $R = \frac{mv_0}{eB}$ c) $R = \frac{eB}{m}$

c)
$$R = \frac{eB}{m}$$

47- Dans le cadre de la question 45, la vitesse initiale v_0 non nulle peut être générée par:

- (a) la force électrique
- b) le poids
- c) la force magnétique

48- Les lignes de champ de \vec{B} , le champ magnétique généré par un fil infini d'axe (Oz) parcouru par un courant I, sont :

- a) des droites divergentes partant de l'axe (Oz)
- b) des paraboles
- (c) des cercles concentriques autour de (Oz)
- d) hélicoïdales d'axe (Oz)

49- Sans faire de calcul, la loi de Biot-Savart permet de dire que :

- a) \vec{B} est colinéaire au courant I mais de sens opposé.
- (b) \vec{B} est orthogonal à I.
- c) \vec{B} est colinéaire au courant I et de même sens.

50- On étudie le champ magnétique créé par un courant parcourant un circuit

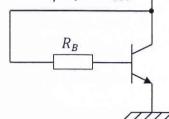
On trouve un plan \mathcal{P} d'antisymétrie pour la distribution de courant. Que peut-on dire?

- (a) \vec{B} appartient à \mathcal{P}
- b) \vec{B} est nul
- c) \vec{B} est orthogonal à ce plan

 R_{C}

QCM Electronique - InfoS4

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

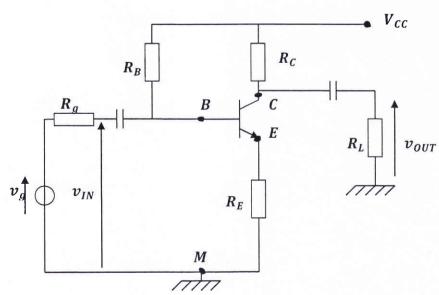

On considère le montage suivant (montage par réaction de collecteur). Quelle est l'expression de I_C ?

(a-)
$$I_C = \beta \cdot \frac{V_{CC} - V_{BE}}{(\beta + 1) \cdot R_C + R_B}$$

b-
$$I_C = \frac{V_{CC} - V_{BE}}{\beta \cdot R_C + R_B}$$

$$C- I_C = \frac{V_{CC}}{R_C + \frac{R_B}{\beta}}$$

$$\begin{aligned} \mathbf{c} &- & I_C = \frac{v_{CC}}{R_C + \frac{R_B}{\beta}} \\ \mathbf{d} &- & I_C = \frac{v_{CC} + v_{BE}}{R_C + \frac{R_B}{\beta}} \end{aligned}$$


Si le gain en courant β d'un transistor bipolaire vaut 150 et le courant collecteur de 75mA, alors le courant d'émetteur vaut :

- a- 75,2ma
- b- 74,5mA
- (c-) 75,5mA
- d- 80A

Schéma équivalent petits signaux

- Q3. En sortie et dans la zone linéaire, le transistor est considéré comme :
 - (a-) Une source de courant
- b- Une source de tension
- c- Une diode

Soit le, montage suivant :

- **Q4.** Ce montage est un amplificateur si le transistor fonctionne :
 - (a-) En mode normal
- b- En mode bloqué
- c- En mode saturé

- Q5. A quoi servent les condensateurs ?
 - a- A bloquer les signaux variables
- c- A court-circuiter R_L
- (b-) A bloquer les signaux continus
- d- A rien
- Q6. Les condensateurs sont des condensateurs de :
 - (a-) liaison.

c- covalence

b- découplage

d- recombinaison.

On donne:

$$R_B=100k\Omega$$
, $R_C=500\Omega$, $R_E=1k\Omega$, $V_{CC}=12V$, $\beta=100$, $V_{BE}=0.7V$ si la jonction Base-Emetteur est passante.

- Q7. Ce transistor fonctionne en mode :
 - (a-) linéaire

b- bloqué

c- saturé

- **Q8.** Le courant I_B vaut :
 - a- 11,4 mA
- b- 4,65 mA
- (c-) 57 μA
- d- 5,7 mA
- Q9. Pour déterminer le schéma équivalent petits signaux de l'amplificateur :
 - a- On annule la source de tension variable v_g et on remplace les condensateurs par des fils
 - $footnote{b}$ On annule la source de tension continue V_{cc} et on remplace les condensateurs par des fils.
 - c- On annule la source de tension variable $\emph{v}_{\emph{g}}$ et on remplace les condensateurs par des interrupteurs ouverts.
 - d- On annule la source de tension continue V_{cc} et on remplace les condensateurs par des interrupteurs ouverts.
- Q10. Un amplificateur doit être un circuit linéaire pour ne pas modifier la fréquence du signal amplifié.
 - a- VRAI

b- FAUX

QCM 3 Architecture des ordinateurs

Lundi 4 février 2019

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- 11. Quelle(s) instruction(s) peut-on utiliser pour appeler un sous-programme?
 - A. BRA
 - B. BCC
 - (C.) BSR
 - D. JMP
- 12. Les étapes pour empiler une donnée sont :
 - (A) Décrémenter A7 puis écrire la donnée dans (A7).
 - B. Écrire la donnée dans (A7) puis décrémenter A7.
 - C. Lire la donnée dans (A7) puis incrémenter A7.
 - D. Incrémenter A7 puis lire la donnée dans (A7).
- 13. Choisir les réponses exactes.
 - A) Si une instruction possède deux opérandes, l'opérande droit est toujours la destination.
 - B. Si une instruction possède deux opérandes, l'opérande source est toujours modifié par l'instruction.
 - C. Toutes les instructions possèdent au moins un opérande.
 - ①. Si une instruction possède deux opérandes, l'opérande gauche est toujours la source.
- 14. Le registre ${\bf PC}$ contient :
 - A. L'adresse du bas de la pile.
 - B. L'adresse du sommet de la pile.
 - C. Le code machine de la prochaine instruction à exécuter.
 - (C) L'adresse de la prochaine instruction à exécuter.
- 15. Pour le 68000, la taille minimale d'un code machine est de :
 - A. 32 bits
 - B. 4 bits
 - C. 8 bits
 - (D) 16 bits

16. Le 68000 possède:

- A. Un bus de donnée de 32 bits.
- B. Un bus d'adresse de 16 bits.
- C.) Des registres de donnée de 32 bits.
- D. Des registres d'adresse de 16 bits.
- 17. Quel mode de fonctionnement est utilisé par une application ?
 - (A.) Le mode utilisateur.
 - B. Le mode noyau.
 - C. Le mode superviseur.
 - D. Le mode débutant.
- 18. Le 68000 possède :
 - A. 1 registre PC
 - B. 2 registres PC
 - C. 4 registres PC
 - D. 8 registres PC
- 19. Le 68000 possède:
 - A. 1 pointeur de pile
 - B) 2 pointeurs de pile
 - C. 4 pointeurs de pile
 - D. 8 pointeurs de pile
- 20. Le 68000 possède:
 - (A) 1 registre d'état
 - B. 2 registres d'état
 - C. 4 registres d'état
 - D. 8 registres d'état