
Names, Scopes, and Bindings

Akim Demaille Étienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA � École Pour l'Informatique et les Techniques Avancées

February 10, 2019

Names, Scopes, and Bindings

1 Bindings

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 2 / 56

Bindings

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 3 / 56

Names

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 4 / 56

Names, Identi�ers, Symbols

Name (Identi�ers, Symbols)

reference

address

value

To refer to some entities: variable, type, function, namespace,
constant, control structure (e.g., named next, continue in Perl), etc.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 5 / 56

Identi�ers

usually alphanumeric and underscore, letter �rst, without white spaces.

ALGOL 60, FORTRAN ignore white spaces.
limitation on the length

6 characters for the original FORTRAN (Fortran 90: 31),
ISO C: 31
no limit for most others.

case insensitive in Modula-2 and Ada.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 6 / 56

Names, Objects, and Bindings [Edwards, 2003]

Object 2

Object 3

Object 1

Object 4

Name 1

Name 2

Name 3

Name 4

binding

binding

binding

binding

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 7 / 56

Names, Objects, and Bindings

When are objects created and destroyed?
Lifetimes (deferred to a later lecture).

When are names created and destroyed?
Scopes.

When are bindings created and destroyed?
Binding times.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 8 / 56

Names, Objects, and Bindings

When are objects created and destroyed?
Lifetimes (deferred to a later lecture).

When are names created and destroyed?
Scopes.

When are bindings created and destroyed?
Binding times.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 8 / 56

Names, Objects, and Bindings

When are objects created and destroyed?
Lifetimes (deferred to a later lecture).

When are names created and destroyed?
Scopes.

When are bindings created and destroyed?
Binding times.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 8 / 56

Scopes

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 9 / 56

Scopes [Edwards, 2003]

When are names created, visible, and destroyed?

Scope
The textual region in the source in which the binding is active.

Static Scoping
The scope can be computed at compile-time.

Dynamic Scoping
The scope depends on runtime conditions such as the function calls.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 10 / 56

Scopes [Edwards, 2003]

When are names created, visible, and destroyed?

Scope
The textual region in the source in which the binding is active.

Static Scoping
The scope can be computed at compile-time.

Dynamic Scoping
The scope depends on runtime conditions such as the function calls.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 10 / 56

Scopes [Edwards, 2003]

When are names created, visible, and destroyed?

Scope
The textual region in the source in which the binding is active.

Static Scoping
The scope can be computed at compile-time.

Dynamic Scoping
The scope depends on runtime conditions such as the function calls.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 10 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Why Scopes?

Scopes are the �rst form of structure/modularity

No scopes in assembly

No scopes in MFS
(First generation of the Macintosh File System)

Without scopes, names have a global in�uence

With scopes, the programmer can focus on local in�uences

Scopes in correct programs with unique identi�ers are �useless�

C++ namespaces are �pure scopes�

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 11 / 56

Declaration

Blocks determine scopes.

local variables

non local variables

global variables

int global;

auto outer(void)

{

int local, non_local;

int inner(void)

{

return global + non_local;

}

return inner;

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 12 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Static Scoping

In most languages
(Ada, C, Tiger, FORTRAN, Scheme, Perl (my), etc.).

Enables static binding.

Enables static typing.
Enables strong typing (Ada, ALGOL 68, Tiger).

safer
faster
clearer

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 13 / 56

Dynamic Scoping

In most scripting/interpreted languages (Perl (local), Shell Script,
TEX etc.) but also in Lisp (as opposed to Scheme).

Dynamic Scoping in TeX

% \x, \y undefined.

{

% \x, \y undefined.

\def \x 1

% \x defined, \y undefined.

\ifnum \a < 42

\def \y 51

\fi

% \x defined, \y may be defined.

}

% \x, \y undefined.

Prevents static typing
An identi�er may refer to di�erent values, with di�erent types.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 14 / 56

Dynamic Scoping

In most scripting/interpreted languages (Perl (local), Shell Script,
TEX etc.) but also in Lisp (as opposed to Scheme).

Dynamic Scoping in TeX

% \x, \y undefined.

{

% \x, \y undefined.

\def \x 1

% \x defined, \y undefined.

\ifnum \a < 42

\def \y 51

\fi

% \x defined, \y may be defined.

}

% \x, \y undefined.

Prevents static typing
An identi�er may refer to di�erent values, with di�erent types.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 14 / 56

Dynamic Scoping

In most scripting/interpreted languages (Perl (local), Shell Script,
TEX etc.) but also in Lisp (as opposed to Scheme).

Dynamic Scoping in TeX

% \x, \y undefined.

{

% \x, \y undefined.

\def \x 1

% \x defined, \y undefined.

\ifnum \a < 42

\def \y 51

\fi

% \x defined, \y may be defined.

}

% \x, \y undefined.

Prevents static typing
An identi�er may refer to di�erent values, with di�erent types.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 14 / 56

Scopes in Tiger

Many di�erent t, including several �variables�.

t time

let

type t = { h: int, t: t }

function t (h: int, t: t) : t =

t { h = h, t = t }

var t := t (12, nil)

var t := t (12, t)

in

t.t = t

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 15 / 56

Scopes [Appel, 1998]

ML

structure M = struct

structure E = struct

val a = 5;

end

structure N = struct

val b = 10;

val a = E.a + b;

end

structure D = struct

val d = E.a + N.a;

end

end

Java (fwd declaration allowed)

package M;

class E {

static int a = 5;

}

class N {

static int b = 10;

static int a = E.a + b;

}

class D {

static int d = E.a + N.a;

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 16 / 56

Scopes [Appel, 1998]

structure M = struct

structure E = struct

val a = 5;

end

structure N = struct

val b = 10;

val a = E.a + b;

end

structure D = struct

val d = E.a + N.a;

end

end

σ0 = Prelude

σ1 = {a : int}
σ2 = {E : σ1}
σ3 = {b : int, a : int}
σ4 = {N : σ3}
σ5 = {d : int}
σ6 = {D : σ5}
σ7 = σ2 + σ4 + σ6

σ0 + σ2 ` N : σ3 (ML)

σ0 + σ2 + σ4 ` N : σ3 (Java)

σ0 + σ2 + σ4 + σ6 ` M : σ7

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 17 / 56

Lifetime (or extent)

Lifetime is a di�erent matter, related to the execution (as opposed to
visibility).

Extent bound to lifetime of block tend to promote global variables
(Pascal).

Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?

Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 56

Lifetime (or extent)

Lifetime is a di�erent matter, related to the execution (as opposed to
visibility).

Extent bound to lifetime of block tend to promote global variables
(Pascal).

Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?

Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 56

Lifetime (or extent)

Lifetime is a di�erent matter, related to the execution (as opposed to
visibility).

Extent bound to lifetime of block tend to promote global variables
(Pascal).

Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?

Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 56

Lifetime (or extent)

Lifetime is a di�erent matter, related to the execution (as opposed to
visibility).

Extent bound to lifetime of block tend to promote global variables
(Pascal).

Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?

Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 56

Lifetime (or extent)

Lifetime is a di�erent matter, related to the execution (as opposed to
visibility).

Extent bound to lifetime of block tend to promote global variables
(Pascal).

Static local variables as in C (static), ALGOL 60 own, PL/I.
Initialization?

Modules tend to replace this block related feature.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 18 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Scopes in C++

A lot of scope in a real programming language.

Block scope

Function parameter scope

Function scope

Namespace scope

Class scope

Enumeration Scope

Template parameter scope

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 19 / 56

Binding Time

1 Bindings
Names
Scopes
Binding Time

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 20 / 56

Binding Time [Edwards, 2003]

When a binding from a name to an object is made.

Binding Time Examples

language design if

language implementation data width
program writing foo, bar
compilation static objects, code
linkage relative addresses
loading shared objects
execution heap objects

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 21 / 56

Binding Time: the moving IN

Roughly, �exibility and e�ciency

are mutually exclusive

depend on binding time.

The Moving IN

binding-time

early ---------------------------------> late

INflexibility flexibility

efficiency INefficiency

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 22 / 56

Binding Time: the moving IN

Roughly, �exibility and e�ciency

are mutually exclusive

depend on binding time.

The Moving IN

binding-time

early ---------------------------------> late

INflexibility flexibility

efficiency INefficiency

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 22 / 56

Binding Time: the moving IN

Roughly, �exibility and e�ciency

are mutually exclusive

depend on binding time.

The Moving IN

binding-time

early ---------------------------------> late

INflexibility flexibility

efficiency INefficiency

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 22 / 56

Dynamic Binding: virtual in C++

Dynamic dispatch is roughly runtime overloading.

Dynamic Dispatch in C++

struct Shape

{

virtual void draw() const = 0;

};

struct Square : public Shape

{

void draw() const override {};

};

struct Circle : public Shape

{

void draw() const override {};

};

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 23 / 56

Dynamic Binding: virtual in C++

Dynamic Dispatch in C++

#include <vector>

#include "shapes.hh"

using shapes_type = std::vector<Shape*>;

int main()

{

auto ss = shapes_type{new Circle, new Square};

for (auto s: ss)

// Inclusion polymorphism.

s->draw();

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 24 / 56

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.

Enables language
extensions.

try/catch in Perl

sub try (&@) {

my ($try, $catch) = @_;

eval { &$try }; # Explicit eval.

if ($@) {

local $_ = $@;

&$catch;

}

}

sub catch (&) {

$_[0]; # implicit eval.

}

try {

die "phooey";

} catch {

/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 25 / 56

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.

Enables language
extensions.

try/catch in Perl

sub try (&@) {

my ($try, $catch) = @_;

eval { &$try }; # Explicit eval.

if ($@) {

local $_ = $@;

&$catch;

}

}

sub catch (&) {

$_[0]; # implicit eval.

}

try {

die "phooey";

} catch {

/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 25 / 56

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.

Enables language
extensions.

try/catch in Perl

sub try (&@) {

my ($try, $catch) = @_;

eval { &$try }; # Explicit eval.

if ($@) {

local $_ = $@;

&$catch;

}

}

sub catch (&) {

$_[0]; # implicit eval.

}

try {

die "phooey";

} catch {

/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 25 / 56

Late Code Binding: eval

Most interpreted
languages support eval
(explicit or not): runtime
code evaluation.

Enables language
extensions.

try/catch in Perl

sub try (&@) {

my ($try, $catch) = @_;

eval { &$try }; # Explicit eval.

if ($@) {

local $_ = $@;

&$catch;

}

}

sub catch (&) {

$_[0]; # implicit eval.

}

try {

die "phooey";

} catch {

/phooey/ and print "unphooey\n";

};
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 25 / 56

Binding Times in Tiger [Edwards, 2003]

Design Keywords

Program Identi�ers

Compile Function code, frames, types

Execution Records, arrays addresses

Little dynamic behavior

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 26 / 56

Symbol Tables

1 Bindings

2 Symbol Tables

3 Complications

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 27 / 56

Visiting an ast

For statically scoped languages

many traversals check uses against de�nitions

most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)

this memory is related to scopes

we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 56

Visiting an ast

For statically scoped languages

many traversals check uses against de�nitions

most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)

this memory is related to scopes

we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 56

Visiting an ast

For statically scoped languages

many traversals check uses against de�nitions

most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)

this memory is related to scopes

we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 56

Visiting an ast

For statically scoped languages

many traversals check uses against de�nitions

most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)

this memory is related to scopes

we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 56

Visiting an ast

For statically scoped languages

many traversals check uses against de�nitions

most traversals need a form of memory (binding, type, escapes,
inlining, translation, etc.)

this memory is related to scopes

we need some reversible memory (do/undo)

Similarly for narrow compilers without ast

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 28 / 56

Symbol Tables: Scopes

Handle scopes?

not needed if all the names are
unique

or if there exists a unique
identi�er

required otherwise

Handle scopes explicitly?

yes: the tables support undo:
scoped symbol tables

no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 56

Symbol Tables: Scopes

Handle scopes?

not needed if all the names are
unique

or if there exists a unique
identi�er

required otherwise

Handle scopes explicitly?

yes: the tables support undo:
scoped symbol tables

no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 56

Symbol Tables: Scopes

Handle scopes?

not needed if all the names are
unique

or if there exists a unique
identi�er

required otherwise

Handle scopes explicitly?

yes: the tables support undo:
scoped symbol tables

no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 56

Symbol Tables: Scopes

Handle scopes?

not needed if all the names are
unique

or if there exists a unique
identi�er

required otherwise

Handle scopes explicitly?

yes: the tables support undo:
scoped symbol tables

no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 56

Symbol Tables: Scopes

Handle scopes?

not needed if all the names are
unique

or if there exists a unique
identi�er

required otherwise

Handle scopes explicitly?

yes: the tables support undo:
scoped symbol tables

no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 56

Symbol Tables: Scopes

Handle scopes?

not needed if all the names are
unique

or if there exists a unique
identi�er

required otherwise

Handle scopes explicitly?

yes: the tables support undo:
scoped symbol tables

no: rely on automatic variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 29 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

(Non Scoped) Symbol Tables

An associative array

put

get

Implementation

a list

a tree

a hash

...

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 30 / 56

Scoped Symbol Table: symbol::Table

class Table

template <typename Entry_T>

class Table

{

public:

Table();

auto put(symbol key, Entry_T& val) -> void;

auto get(symbol key) const -> Entry_T*;

auto scope_begin() -> void;

auto scope_end() -> void;

auto print(std::ostream& ostr) const -> void;

};

Not very C++ (iterators instead of pointers, operator[], etc.)

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 31 / 56

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays

Copying, or not copying?

Functional (Non Destructive) Versions

Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 56

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays

Copying, or not copying?

Functional (Non Destructive) Versions

Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 56

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays

Copying, or not copying?

Functional (Non Destructive) Versions

Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 56

Scoped Symbol Table Implementations

Mixing Stacks and Associative Arrays

Copying, or not copying?

Functional (Non Destructive) Versions

Mongrels

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 32 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind

and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind and Paracetamol

never

tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management

When do you deallocate associated data?

scope end deallocate everything since the latest scope_begin

pass end deallocate auxiliary data after the traversal is completed

ast bind the data to the ast and delegate deallocation

by hand thanks God for Valgrind and Paracetamol

never tu sors

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 33 / 56

Memory Management: Deallocate on scope exit

But then...

Twice foo

let var foo := 42

var foo := 51

in foo end

Two lets

let var foo := 42 in

let var foo := 51

in foo end end

but then again...

Escaping type

let type rec = {}

in rec {} end <> nil

Segmentation violation...

Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 56

Memory Management: Deallocate on scope exit

But then...

Twice foo

let var foo := 42

var foo := 51

in foo end

Two lets

let var foo := 42 in

let var foo := 51

in foo end end

but then again...

Escaping type

let type rec = {}

in rec {} end <> nil

Segmentation violation...

Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 56

Memory Management: Deallocate on scope exit

But then...

Twice foo

let var foo := 42

var foo := 51

in foo end

Two lets

let var foo := 42 in

let var foo := 51

in foo end end

but then again...

Escaping type

let type rec = {}

in rec {} end <> nil

Segmentation violation...

Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 56

Memory Management: Deallocate on scope exit

But then...

Twice foo

let var foo := 42

var foo := 51

in foo end

Two lets

let var foo := 42 in

let var foo := 51

in foo end end

but then again...

Escaping type

let type rec = {}

in rec {} end <> nil

Segmentation violation...
Courtesy of Arnaud Fabre.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 34 / 56

Memory Management: Deallocate with the AST

annotate each node of ast

annotate each scoping node with a symbol table and link them

leave tables outside

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 56

Memory Management: Deallocate with the AST

annotate each node of ast

annotate each scoping node with a symbol table and link them

leave tables outside

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 56

Memory Management: Deallocate with the AST

annotate each node of ast

annotate each scoping node with a symbol table and link them

leave tables outside

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 35 / 56

Factoring Scope Handling

no scope handling needed if names are unique

so use regular associative containers

but how can you guarantee unique names

do you need to make names uniques?

Bind the names/Label by de�nition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 56

Factoring Scope Handling

no scope handling needed if names are unique

so use regular associative containers

but how can you guarantee unique names

do you need to make names uniques?

Bind the names/Label by de�nition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 56

Factoring Scope Handling

no scope handling needed if names are unique

so use regular associative containers

but how can you guarantee unique names

do you need to make names uniques?

Bind the names/Label by de�nition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 56

Factoring Scope Handling

no scope handling needed if names are unique

so use regular associative containers

but how can you guarantee unique names

do you need to make names uniques?

Bind the names/Label by de�nition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 56

Factoring Scope Handling

no scope handling needed if names are unique

so use regular associative containers

but how can you guarantee unique names

do you need to make names uniques?

Bind the names/Label by de�nition address

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 36 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds...

breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Binder

annotates uses with links to their de�nitions

uses scoped symbol tables

or regular containers and recursion

checks multiple de�nitions

checks missing de�nitions

and also binds... breaks to their loops

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 37 / 56

Complications

1 Bindings

2 Symbol Tables

3 Complications
Overloading
Non Local Variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 38 / 56

Overloading

1 Bindings

2 Symbol Tables

3 Complications
Overloading
Non Local Variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 39 / 56

Overloading

Overloading: Homonyms
Several entities bearing the same name,
but statically distinguishable, e.g., by
their arity, type etc.

Aliasing: Synonyms
One entity bearing several names.

// foo is overloaded.

int foo(int);

int foo(float);

// x and y are aliases.

int x;

int& y = x;

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 40 / 56

Operator Overloading

Overloading is meant to simplify the user's life. Since FORTRAN!

Overloading in Caml

1 + 2;;

- : int = 3

1.0 + 2.0;;

Characters 0-3:

1.0 + 2.0;;

^^^

This expression has type float but is here used with type int

1.0 +. 2.0;;

- : float = 3.

Thank God, C was invented to improve Caml:
int a = 1 + 2;;

float b = 1.0 + 2.0;;

Of course this is unfair: Caml has type inference.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 41 / 56

Operator Overloading

Overloading is meant to simplify the user's life. Since FORTRAN!

Overloading in Caml

1 + 2;;

- : int = 3

1.0 + 2.0;;

Characters 0-3:

1.0 + 2.0;;

^^^

This expression has type float but is here used with type int

1.0 +. 2.0;;

- : float = 3.

Thank God, C was invented to improve Caml:
int a = 1 + 2;;

float b = 1.0 + 2.0;;

Of course this is unfair: Caml has type inference.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 41 / 56

Operator Overloading

Overloading is meant to simplify the user's life. Since FORTRAN!

Overloading in Caml

1 + 2;;

- : int = 3

1.0 + 2.0;;

Characters 0-3:

1.0 + 2.0;;

^^^

This expression has type float but is here used with type int

1.0 +. 2.0;;

- : float = 3.

Thank God, C was invented to improve Caml:
int a = 1 + 2;;

float b = 1.0 + 2.0;;

Of course this is unfair: Caml has type inference.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 41 / 56

Function Overloading

Usually based on the arguments
(Ada, C++, Java...; not C, ALGOL 60, Fortran...).

ALGOL 60

integer I;

real X;

...

PUTSTRING("results are: "); PUTINT(I); PUTREAL(X);

Ada [ARM, 1983]

I : INTEGER;

X : REAL;

...

PUT("results are: "); PUT(I); PUT(X);

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 42 / 56

Overloading is Syntactic Sugar

Overloaded

#include <string>

void foo(int);

void foo(char);

void foo(const char*);

void foo(std::string);

int

main ()

{

foo(0);

foo('0');

foo("0");

foo(std::string("0"));

}

Un-overloaded

#include <string>

void foo_int(int);

void foo_char(char);

void foo_char_p(const char*);

void foo_std_string(std::string);

int

main ()

{

foo_int(0);

foo_char('0');

foo_char_p("0");

foo_std_string(std::string("0"));

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 43 / 56

Overloading is Syntactic Sugar

Overloaded

#include <string>

void foo(int);

void foo(char);

void foo(const char*);

void foo(std::string);

int

main ()

{

foo(0);

foo('0');

foo("0");

foo(std::string("0"));

}

Un-overloaded

#include <string>

void foo_int(int);

void foo_char(char);

void foo_char_p(const char*);

void foo_std_string(std::string);

int

main ()

{

foo_int(0);

foo_char('0');

foo_char_p("0");

foo_std_string(std::string("0"));

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 43 / 56

Overloading is Syntactic Sugar

Usually solved by renaming/mangling.

g++-2.95, como
f__Fi -> int f(int);

f__FPc -> int f(char*);

g++-3.2, icc
_Z1fi -> int f(int);

_Z1fPc -> int f(char*);

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 44 / 56

Overloading in Tiger

Ordering <, <=, >, and >=

overloaded for pairs of integers, or strings.

Identity = and <>

overloaded for (type coherent) pairs of integers, strings,
arrays or records.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 45 / 56

Non Local Variables

1 Bindings

2 Symbol Tables

3 Complications
Overloading
Non Local Variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 46 / 56

Lambda Shifting

With nested functions

int global;

int outer(void)

{

int local, non_local;

int inner(void)

{

return

global + non_local;

}

return inner();

}

Without

int global;

int outer_inner_(int* non_local)

{

return global + *non_local;

}

int outer(void)

{

int local, non_local;

return outer_inner_(&non_local);

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 47 / 56

Lambda Shifting

With nested functions

int global;

int outer(void)

{

int local, non_local;

int inner(void)

{

return

global + non_local;

}

return inner();

}

Without

int global;

int outer_inner_(int* non_local)

{

return global + *non_local;

}

int outer(void)

{

int local, non_local;

return outer_inner_(&non_local);

}

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 47 / 56

Non Local Variables

let

function outer(): int =

let

nonlocal var outer := 0

in

let

function inner() : int =

let

var inner := 1

in

inner + outer

end

in

inner()

end

end

in

outer ()

end
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 48 / 56

Non Non Local Variables

let

let

local var outer := 0

in

let

let

var inner := 1

in

inner + outer

end

in

end

end

in

end
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 49 / 56

Non Non Local Variables

let

function outer(): int =

let

local var outer := 0

in

let

let

var inner := 1

in

inner + outer

end

in

end

end

in

outer()

end
A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 50 / 56

The Escapes and Functional Programming

let

function add(nonlocal a: int, b: int) : int =

let

function add_a(x: int) : int = a + x

in

add_a(b)

end

in

print_int(add(1, 2));

print("\n")

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 51 / 56

Closures

let

function add_gen(nonlocal a: int) : int -> int =

let

function add_a(x: int) : int = a + x

in

add_a

end

incr = add_gen(1);

in

print_int(incr(2));

print("\n");

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 52 / 56

The Escapes & Recursion

let

function one(input : int) =

let

function two() =

(print("two: "); print_int(input);

print("\n");

one(input))

in

if input > 0 then

(input := input - 1;

two(); print("one: ");

print_int(input); print("\n"))

end

in

one (3)

end

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 53 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Escaping Variables/Arguments

Technically escaping means �cannot be stored in a register�.

In C Large values (arrays, structs).
Variables whose address is taken.
Variable arguments.

In Tiger variables/arguments from outer functions.
not variables/arguments from outer scopes.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 54 / 56

Annotating the ast

being non local means having non local uses

obviously non local variables need to be accessible from inner functions

to simplify the compiler, it is easier to leave them on the stack

hence the translation to intermediate representation needs to know
which variables are non local from their de�nitions

therefore a preleminary pass should �ag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 55 / 56

Annotating the ast

being non local means having non local uses

obviously non local variables need to be accessible from inner functions

to simplify the compiler, it is easier to leave them on the stack

hence the translation to intermediate representation needs to know
which variables are non local from their de�nitions

therefore a preleminary pass should �ag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 55 / 56

Annotating the ast

being non local means having non local uses

obviously non local variables need to be accessible from inner functions

to simplify the compiler, it is easier to leave them on the stack

hence the translation to intermediate representation needs to know
which variables are non local from their de�nitions

therefore a preleminary pass should �ag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 55 / 56

Annotating the ast

being non local means having non local uses

obviously non local variables need to be accessible from inner functions

to simplify the compiler, it is easier to leave them on the stack

hence the translation to intermediate representation needs to know
which variables are non local from their de�nitions

therefore a preleminary pass should �ag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 55 / 56

Annotating the ast

being non local means having non local uses

obviously non local variables need to be accessible from inner functions

to simplify the compiler, it is easier to leave them on the stack

hence the translation to intermediate representation needs to know
which variables are non local from their de�nitions

therefore a preleminary pass should �ag non local variables

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 55 / 56

Bibliography I

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

ARM (1983).
Ada Reference Manual.

Edwards, S. (2003).
COMS W4115 Programming Languages and Translators.
http://www.cs.columbia.edu/~sedwards/classes/2003/w4115/.

A. Demaille, E. Renault, R. Levillain Names, Scopes, and Bindings 56 / 56

http://www.cs.columbia.edu/~sedwards/classes/2003/w4115/

	Bindings
	Names
	Scopes
	Binding Time

	Symbol Tables
	Complications
	Overloading
	Non Local Variables

