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Types are not necessary!

Consider the assembly language fragment:

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

Assembly language is untyped (MIPS assembly) !
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Why do we need type systems?

It does not make sense to add a function pointer and an integer in C

It does make sense to add two integers

But both have the same assembly language implementation!
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Of FORTRAN and Satellites

ANTENNA.F

...

...

DO 1 I = 1, 5

C Extend the antenna.

...

1 If antenna is extended

2 Then Go to 3

...

3 CONTINUE

4 ...

antenna.c

int I;

...

for (I = 1; I <= 5; ++I)

{

/* Extend the antenna. */

...

if (antenna_is_extended)

goto 3

...

3:

...

}
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Of FORTRAN and Satellites

ANTENNA.F

...

...

DO 1 I = 1. 5

C Extend the antenna.

...

1 If antenna is extended

2 Then Go to 3

...

3 CONTINUE

4 ...

antenna.c

float DO1I = 1.5;

/* Extend the antenna. */

...

if (antenna_is_extended)

goto 3

...

3: ...
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Escape from Paradoxes

Russel's Paradox

E = {x 6∈ x} E ∈ E E 6∈ E

Based on the conjunction of:

Any predicate is an object

Any predicate can be applied to
any object

Rejecting one leads to:

Type theory (1909)

Zermelo Fraenkel's set theory
(1922)
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Reject Impossible Values

1 1

ω = λx .xx
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Enable Optimizations

Static types enables static bindings.

E.g., + in C requires no runtime checks.
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Using Types

Types are not necessary:
There is none at machine/assembly level
operators are �typed� though
There are type-less languages
e.g., in Tcl or M4 everything is a string

But they are useful:
More control from the compiler
Catching �impossible but expressible� situations
Optimizing
Abstraction (arrays, records, etc.)
Memory management (automatic or not)
Violations of abstraction boundaries, such as using a private �eld from
outside a class
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What is Type Checking?

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
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Types

The data types of a language are a large part of what determines that
language's style and usefulness (along with control structures).

Numerics

Booleans

User-de�ned enumerations

Subranges

Arrays (static, stack dynamic, heap dynamic)

Unions (discrimated/free)

Structures/Records/Objects

Tuples/Lists

References/Pointers

etc.
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Type Checking

Type Checking is the activity of ensuring that the operands of an operator

are of compatible types

A compatible type is one that is

either legal for the operator

or allowed under language rules to be implicitly converted by
compiler-generated code (or the interpreter) to a legal type
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Coercion

Coercion is the automatic (implicit) conversion from a type to another.

There are 2 kind of coercion in C-like languages:

widening convertions: from a "smaller" type to a "larger one"
int i = 42;

float f = i;

narrowing convertions: from a "larger" type to a "smaller one"
float f = 42.0;

int i = f;

Note: Java only allows assignment type widening coertions.
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Strong Typing

A programming language is strongly typed if type errors are always
detected.

the types of all operands can be determined, either at compile time

or at runtime

detection, at run time, of uses of the incorrect type values in variables
that can store values of more than one type

Ada is nearly strongly typed due to Unchecked_Conversion

C and C++ are not strongly typed languages because both include
union types

F] and ML are strongly typed
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Type Equivalence

Two types are equivalent if an operand of one type in an expression is
substituted for one of the other type, without coercion.

In other words, Type equivalence is a strict form of compatibility type
compatibility without coercion.

Name type equivalence
two variables have equivalent types if they are de�ned either in the
same declaration or in declarations that use the same type name

int i = 42; int j = 51;

Structure type equivalence
two variables have equivalent types if their types have identical
structures

using celcius = int;

int i = 42; celcius j = 51;
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Static Typing vs. Dynamic Typing

Statically typed languages: all or almost all type checking occurs at
compilation time.

C, Java, etc.

Dynamically typed languages: almost all checking of types is done as
part of program execution.

Scheme

Untyped languages: no type checking
Assembly, Machine code

A. Demaille, E. Renault, R. Levillain Types 18 / 82



Static and Dynamic Types

The dynamic type of an object is the class C that is used in the
new C () expression that construct the object.

Runtime notion
Even langages that are not statically typed have the notion of dynamic
types

The static type of an object is a notation that encapsulates all possible
types the expression could take.

Compile-time notion
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Type Inference (Crash Introduction to Natural Deduction)

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
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Type Checking and Type Inference

Type Checking is the process of verifying fully typed programs

Type Inference is the process of �lling in missing type information

The two are di�erent, but are often used interchangeably!
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Inference Rule

Types not need to be explicit to have static typing.

With the rule rules, one can infer types!

We use an appropriate formalism to express inference rules!
Given a proper notation we can check the accuracy of the rules
Given a proper notation, we can easily translate it into programs.
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From English to an Inference Rule

If e1 has type Int and e2 has type Int

then e1 + e2 has type Int.

(e1 has type Int ∧ e2 has type Int)
=⇒ e1 + e2 has type Int.

(e1: Int ∧ e2: Int)
=⇒ e1 + e2: Int.
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Generalization

The statement:

(e1: Int ∧ e2: Int) =⇒ e1 + e2: Int.

. . . is a special case of:

(Hypothesis1: Int ∧ . . .∧ Hypothesisn: Int) =⇒ Conclusion

This is an inference rule!
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Notation

By tradition inferences rules are written:

` Hyp1 . . . ` Hypn

` Conclusion

` means is provable that . . .
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Example

Detect the type of a variable:

` i is an integer

` i : Int

Detect the type of an expression:

` e1: Int∧ ` e2: Int

` e1 + e2: Int
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Natural Deduction for Intuitionistic Logic

A1, ...,An ` Ak

Γ ` A Γ ` B

Γ ` A× B

Γ ` A× B

Γ ` A

Γ ` A× B

Γ ` B

Γ,A ` B

Γ ` A⇒ B

Γ ` A⇒ B Γ ` A

Γ ` B

Γ ` A

Γ ` A + B

Γ ` B

Γ ` A + B

Γ ` A + B Γ,A ` C Γ,B ` C

Γ ` C
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Natural Deduction for Intuitionistic Logic

x1 : A1, ..., xn : An ` xk : Ak

Γ ` u : A Γ ` v : B

Γ ` (u, v) : A× B

Γ ` u : A× B

Γ ` fst(u) : A

Γ ` u : A× B

Γ ` snd(u) : B

Γ, x : A ` u : B

Γ ` λxA.u : A⇒ B

Γ ` f : A⇒ B Γ ` u : A

Γ ` fu : B

Γ ` u : A

Γ ` inl
A+B(u) : A + B

Γ ` u : B

Γ ` inr
A+B(u) : A + B

Γ ` w : A + B Γ, x : A ` u : C Γ, y : B ` v : C

Γ ` case w of inl(x).u | inr(y).v : C
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Applied to Tiger

Γ ` n : Int Γ ` s : String

x1 : A1, ..., xn : An ` xk : Ak

Γ ` a : Int Γ ` b : Int
+

Γ ` a + b : Int
· · ·
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Applied to Tiger

Γ ` c : Int Γ ` t : A Γ ` f : A
if then else

Γ ` if c then t else f : A

Γ ` c : Int Γ ` t : Void
if then

Γ ` if c then t : Void
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Soundness

It is a property of the type system

Intuitively, a sound type system can correctly predict the type of a
variable at runtime

There can be many sound type rules, we need to use the most precise
ones so it can be useful
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Type Checking in Pratice

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
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Main Idea

Type checking is done compositionally:

1 break down expressions into their subexpressions

2 type-check the subexpressions

3 ensure that the top-level compound expression can then be given a
type itself

Throughout the process, a type environment is maintained which records
the types of all variables in the expression.
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Type Checking and functions

Functions:

have types and can be used in expressions

so they must be type-checked!

Main idea:
1 Look to the type of the body
2 Look to the type of the parameters
3 Deduce type for the function

For recursive functions (or types) the solution is to put all the headers in the
environnement then put the bodies.
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An Overview of Types

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
Numeric Types
Other Primitive Types
Complex Types
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Operation According to Types

Valid or invalid?

String s = �foobar�
s = s + 12;

In Java:
valid
Equivalent to: s += String(12);

In C++:
a String is a std::string
invalid (we have to use std::to_string)

In C

a String is a char*
Not really what we expect!

A. Demaille, E. Renault, R. Levillain Types 35 / 82



Operation According to Types

Valid or invalid?

String s = �foobar�
s = s + 12;

In Java:
valid
Equivalent to: s += String(12);

In C++:
a String is a std::string
invalid (we have to use std::to_string)

In C

a String is a char*
Not really what we expect!

A. Demaille, E. Renault, R. Levillain Types 35 / 82



Operation According to Types

Valid or invalid?

String s = �foobar�
s = s + 12;

In Java:
valid
Equivalent to: s += String(12);

In C++:
a String is a std::string
invalid (we have to use std::to_string)

In C

a String is a char*
Not really what we expect!

A. Demaille, E. Renault, R. Levillain Types 35 / 82



Operation According to Types

Valid or invalid?

String s = �foobar�
s = s + 12;

In Java:
valid
Equivalent to: s += String(12);

In C++:
a String is a std::string
invalid (we have to use std::to_string)

In C

a String is a char*
Not really what we expect!

A. Demaille, E. Renault, R. Levillain Types 35 / 82



Types and Binding

Checking types also requires to check i� associate operations are valid!

One must de�ne what are valid operations

One must de�ne what structure to represent a given type

Type checking and Binding are related!
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Binding

Decreasing safety, increasing �exibility:

during compilation (static binding)

during loading

when entering a subprogram

when executing an instruction
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Types

Atomic, builtin

Logical (Boolean)

Numerical (integer, �oat, �xed,
complex etc.)

Character

User de�ned

intervals

enumerations

arrays

structures, records

unions, variants
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Numeric Types

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
Numeric Types
Other Primitive Types
Complex Types
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Floats

1, sign

7, exponent

24, mantissa

A. Demaille, E. Renault, R. Levillain Types 40 / 82



Floats ANSI/IEEE Std 754-1985
[ANSI/IEEE, 1987, Goldberg, 1991]

IEEE Standard for Binary Floating Point Arithmetic
FLT_ DBL_

RADIX 2
MANT_DIG 24 53
DIG 6 15
MIN_EXP -125 -1021
MIN_10_EXP -37 -307
MAX_EXP 128 1024
MAX_10_EXP +38 308
MIN 1.17549435E-38F 2.2250738585072014E-308
MAX 3.40282347E+38F 1.7976931348623157E+308
EPSILON 1.19209290E-07F 2.2204460492503131E-016
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Floats are surprising (dangerous?)

foo.c

#include <stdio.h>

#define TEST(Op) \

if ((num / den) Op quot) \

puts("1 / 3 " #Op " 1 / 3");

int main()

{

float quot = 1.0 / 3.0;

volatile float num = 1, den = 3;

TEST(<); TEST(<=);

TEST(>); TEST(>=);

TEST(==); TEST(!=);

}

Optimized

% gcc-3.4 foo.c \

-O1 -o foo-c

%./foo-c

1 / 3 < 1 / 3

1 / 3 <= 1 / 3

1 / 3 != 1 / 3

Not Optimized

% gcc-3.4 foo.c \

-o foo-c

% ./foo-c

1 / 3 > 1 / 3

1 / 3 >= 1 / 3

1 / 3 != 1 / 3
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Floats are surprising (dangerous?)

From GCC's documentation

On 68000 and x86 systems, for instance, you can get paradoxical results if
you test the precise values of �oating point numbers. For example, you can
�nd that a �oating point value which is not a NaN is not equal to itself.
This results from the fact that the �oating point registers hold a few more
bits of precision than �t in a `double' in memory. Compiled code moves
values between memory and �oating point registers at its convenience, and
moving them into memory truncates them.

You can partially avoid this problem by using the -ffloat-store option.
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Builtin Examples

Looking at:
` e1 : Int ` e2 : Float

e1
e2

: Float

it seems that �Float� always wins . . .

but . . .
` e1 : Int

int k = e1 : Float
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Fixed Point

PL/I.
DECLARE X FIXED DECIMAL (6, 2);

ON_CHECK(X): Y = X + 12;

Essential in COBOL: �decimals are money�.

Ada user de�ned precision.
type money is delta 0.01 range 0.0 .. 9999.99;
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Complexes

Were builtin at the beginning (FORTRAN).

Implies support for +, −, ∗, /
When designing a langage keep the builtin as small as possible!.
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Other Primitive Types

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
Numeric Types
Other Primitive Types
Complex Types
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Primitive types

Numeric

Boolean (since ALGOL 60)

Characters
String (SNOBOL4 with Pattern-Matching)

Should strings be simply a special kind of character array or a primitive
type?
Should strings have static or dynamic length?
What operations? copy? slices? a�ect? length?
Notion of descriptor
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Complex Types

1 Why using Types?

2 What is Type Checking?

3 Type Inference (Crash Introduction to Natural Deduction)

4 Type Checking in Pratice

5 An Overview of Types
Numeric Types
Other Primitive Types
Complex Types
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Enumerations

Integer ranges, or ordered labels
type days_num = 1 .. 7;

type days = (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

Are enumeration values coerced to integer?

Con�icts are solved in Ada
type light is (red, orange, green);

type flag is (red, orange, green);

Common operations
Pascal
pred (orange)

Ada
flag'pred(orange)
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Enumerations

Characters are enumerations in Ada, contrary to Pascal, C, etc.
type digits is ('0', '1', '2', '3', '4',

'5', '6', '7', '8', '9');

type odgits is ('0', '2', '4', '6', '8');

Iteration over enumerations
for l in '0' .. '8' loop

Disambiguation
for l in odgits'('0')..odgits'('8') loop
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Arrays

Available since Autocodes.

In Fortran [Sun Microsystems, 1996]:

up to 7 dimensions Since FORTRAN IV, originally 3
REAL TAO(2,2,3,4,5,6,10)

Fortran 2008 requires supports up to 15.
free lower bounds

REAL A(3:5, 7, 3:5), B(0:2)

character arrays
CHARACTER M(3,4)*7, V(9)*4
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Arrays [Sebesta, 2002]

In Fortran [Sun Microsystems, 1996]:
CHARACTER BUF(10)

C
char buf[10];

Pascal: size is part of the type!
var buf : array [0 .. 9] of char;

Ada
buf : array (0..9) of characters;

C++ (2011)
std::array<char, 10> buf;
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Initializing Arrays [Sebesta, 2002]

In Fortran:
INTEGER LIST(3)

DATA LIST /0, 3, 5/

Ada
list : array (0..2) of INTEGER := (1, 3, 5);

conv : array (0..9) of INTEGER := (4 => 2,

5 => 1,

others => 0);
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Initializing Arrays

C
int list[] = {42, 51, 96};

const char *const names[] = {"Foo", "Bar", "Baz", "Qux"};

C99
int a[5] = { [3] = 29, 30, [1] = 15 }; // { 0, 15, 0, 29, 30 }

int whitespace[256]

= { [' '] = 1, ['\t'] = 1, ['\h'] = 1,

['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };

GNU C
int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

C++ (2011)
std::array<int, 3> a1{ {1,2,3} }; // double-braces required

std::array<int, 3> a2 = {1, 2, 3}; // except after =

auto a3 = std::array<int, 3>{1, 2, 3};
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Operation on Arrays: APL [Sebesta, 2002]

φV Reverse V

φM Reverse the columns of M

θM Reverse the rows of M

∅M Transpose M
(symbol should be �ipped vertically).

÷ M Invert M
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Pointers

Originally, references (no &, no arithmetics etc.).

Dynamic memory allocation.
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Pointers Arithmetics

A C �feature�.

strlen.c

size_t strlen(const char *cp)

{

size_t res = 0;

for (; *cp; ++cp)

++res;

return res;

}
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A Better strlen

strlen.c

size_t strlen(const char *cp)

{

const char *cp2 = cp;

for (/* nothing. */; *cp2; ++cp2)

continue;

return cp2 - cp;

}
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An Even Better (?) strlen

size_t strlen(const char *str)

{

size_t res = 0;

for (uint32_t *i = (uint32_t *)str;; ++i)

{

if (!(*i & 0x000000ff)) return res;

if (!(*i & 0x0000ff00)) return res + 1;

if (!(*i & 0x00ff0000)) return res + 2;

if (!(*i & 0xff000000)) return res + 3;

res += 4;

}

}

Beware of endianness (here, little endian)

Beware of alignment

Beware of Valgrind

Still four if, one can su�ce
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GLibc's strlen

/* One character at a time, until aligned on longword. */

...

unsigned long int longword_ptr = (unsigned long int *) char_ptr;

unsigned long int himagic = 0x80808080L;

unsigned long int lomagic = 0x01010101L;

if (sizeof (unsigned long int) > 4) {

himagic = ((himagic << 16) << 16) | himagic;

lomagic = ((lomagic << 16) << 16) | lomagic;

}

for (;;) {

unsigned long int longword = *longword_ptr++;

if (((longword - lomagic) & ~longword & himagic) != 0) {

/* Which of the bytes was the zero? If none of them were,

it was a misfire; continue the search. */

const char *cp = (const char *) (longword_ptr - 1);

if (cp[0] == 0) return cp - str;

...

}

}
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Pointers and Arrays in C

Arrays are almost pointers in C

a[i] ; *(a + i) (pointer arithmetic)

a + i = i + a

a + i ; a + i * sizeof (*a) (integer arithmetic)

array[index] vs. index[array]

#include <stdio.h>

int main()

{

int foo[2] = { 51, 42 };

int zero = 0;

printf("%d, %d\n", zero[foo], 1[foo]);

return 0;

}
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Dynamic Arrays

Di�cult implementation: dynamic stack frame.

Deferred to a later lecture dedicated to stack frames.
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Tuples

Typical of functional languages.

pair.hs

fst :: (a,b) -> a

fst (x,y) = x

snd :: (a,b) -> b

snd (x,y) = y
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Records

let type person =

{

first_name : string,

last_name : string

};

Inheritance/extension.
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Variants in Functional Language

Extremely useful for syntax trees [Anisko, 2003].

ast.hs

data Exp = Const Int

| Name String

| Temp String

| Binop { op :: Op, lhs :: Exp, rhs :: Exp }

| Mem Exp

| Call { fun :: Exp, arg :: [Exp] }

| ESeq { stm :: Stm, exp :: Exp }

data Op = Add | Sub | Mul | Div | Mod | And | Or
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Variants in Imperative Language

Decent in Pascal.

variants.p [gpc, 2003]

type

EyeColorType = (Red, Green, Blue, Brown, Pink);

PersonRec = record

Age: Integer;

case EyeColor: EyeColorType of

Red, Green : (WearsGlasses: Boolean);

Blue, Brown: (LengthOfLashes: Integer);

end;
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Unions

Sort of raw variants.

shape.c

typedef enum shape_kind_e

{

shape_square,

shape_circle,

...

} shape_kind_t;

struct Circle;

struct Square;

...

typedef struct Shape

{

shape_kind_t kind;

union {

Square s;

Circle c;

...

} u;

} Shape;
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Functions

Algol has function types.

Additional meaning in high-order functional languages.
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Tuples and Functions

curry convert an uncurried function to a curried function

uncurry convert a curried function to a function on pairs

curry.hs

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> ((a, b) -> c)

uncurry f p = f (fst p) (snd p)
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Genericity

A means to de�ne a list of X , where X is a type variable.
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Genericity in C++

shape.cc

template <typename C>

class Shape

{

public:

Shape(C x, C y)

: x_(x), y_(y)

{}

// ...

private:

C x_, y_;

};

auto f = Shape<int>{1, 2};
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Genericity in Ei�el

shape.e

class SHAPE[COORDINATE]

feature

xc, yc : COORDINATE ;

set_x_y(x,y : COORDINATE) is

do

xc := x ;

yc := y ;

end ;

...
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Genericity in Ei�el

shape.e

class SHAPE[COORDINATE->NUMERIC]

feature

xc, yc : COORDINATE ;

set_x_y(x,y : COORDINATE) is

do

xc := x ;

yc := y ;

end ;

...
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Genericity in Haskell: Signature of Maybe

Maybe.hs

module Maybe(

isJust, isNothing,

fromJust, fromMaybe, listToMaybe, maybeToList,

catMaybes, mapMaybe,

-- ...and what the Prelude exports

Maybe(Nothing, Just),

maybe) where

data Maybe a = Nothing | Just a

isJust, isNothing :: Maybe a -> Bool

fromJust :: Maybe a -> a

fromMaybe :: a -> Maybe a -> a

listToMaybe :: [a] -> Maybe a

maybeToList :: Maybe a -> [a]

catMaybes :: [Maybe a] -> [a]

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
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Genericity in Haskell: Implementation of Maybe

Maybe.hs

isJust :: Maybe a -> Bool

isJust (Just a) = True

isJust Nothing = False

isNothing :: Maybe a -> Bool

isNothing = not . isJust

fromJust :: Maybe a -> a

fromJust (Just a) = a

fromJust Nothing = error "Maybe.fromJust: Nothing"

fromMaybe :: a -> Maybe a -> a

fromMaybe d Nothing = d

fromMaybe d (Just a) = a
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Genericity in Haskell: Implementation of Maybe

Maybe.hs

maybeToList :: Maybe a -> [a]

maybeToList Nothing = []

maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a

listToMaybe [] = Nothing

listToMaybe (a:_) = Just a

catMaybes :: [Maybe a] -> [a]

catMaybes ms = [ m | Just m <- ms ]

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

mapMaybe f = catMaybes . map f
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A Grammar for Types

Tiger Types [Appel, 1998]

〈Type〉 ::= "Int" | "String" | "Void" | "Nil"
| "Array" 〈Type〉
| "Record" ( "Id" 〈Type〉 )?

| "Class" ( "Id" 〈Type〉 )? ( "Id" 〈Method〉 )?

| "Function" ( "Id" 〈Type〉 )? "->" 〈Type〉
| "Method" ( "Id" 〈Type〉 )+ "->" 〈Type〉
| "Name" 〈String〉
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Comparing two Types

Equivalence

by structure

by name

Pascal report did not de�ne �equivalent types�.

equivalence.p

type link = ^cell;

var next : link;

last : link;

p : ^cell;

q, r : ^cell;
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Comparing two Types for Identity

equivalence.tig

type original = { value : int }

type copy = { value : int }

type alias = original
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Compatibility

compatibility.ada

subtype index1 is integer 1 .. 10;

type index2 is new integer 1 .. 10;

Subtypes are constrained types.
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