
Subprograms

Akim Demaille, Etienne Renault, Roland Levillain

May 16, 2019

TYLA Subprograms May 16, 2019 1 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 2 / 61

Subprograms

At the origin, snippets copied and pasted from other sources

I Impact on memory management;
I Impact on separated compilation;
I Modular programming: first level of interface/abstraction.

First impact on Software Engineering: “top-down” conception,
by refinements.

Generalizations: modules and/or objects.

TYLA Subprograms May 16, 2019 3 / 61

Table of Contents

1 Routines
Procedures vs. Functions
Hybridation: Procedure/Functions
Default values and named Arguments

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 4 / 61

Procedures vs. Functions

Procedure Subprograms with no return value.
Procedures have side effects

Function Subprograms that return something.
(Pure) Functions do not have side effects

Ada, Pascal, . . . have two reserved keywords procedure and function
BUT function generally describe subprograms with return values,

while procedures do not return values

Distinction sometimes blurred by the language:
(e.g., using void ALGOL, C, Tiger...).

TYLA Subprograms May 16, 2019 5 / 61

Procedures vs. Functions

Function Add(A, B : Integer) : Integer;

Begin

Add := A + B;

End;

Functions in Pascal

Procedure finish(name: String);

Begin

WriteLn(’Goodbye ’, name);

End;

Procedures in Pascal

TYLA Subprograms May 16, 2019 6 / 61

Vocabulary

Formal Argument Arguments of a subprogram declaration.

let function

sum (x: int , y: int): int = x + y

Effective Argument Arguments of a call to a subprogram.

sum (40, 12)

Parameter Please reserve it for templates.

TYLA Subprograms May 16, 2019 7 / 61

Vocabulary

Formal Argument Arguments of a subprogram declaration.

let function

sum (x: int , y: int): int = x + y

Effective Argument Arguments of a call to a subprogram.

sum (40, 12)

Parameter Please reserve it for templates.

TYLA Subprograms May 16, 2019 7 / 61

Vocabulary

Formal Argument Arguments of a subprogram declaration.

let function

sum (x: int , y: int): int = x + y

Effective Argument Arguments of a call to a subprogram.

sum (40, 12)

Parameter Please reserve it for templates.

TYLA Subprograms May 16, 2019 7 / 61

Table of Contents

1 Routines
Procedures vs. Functions
Hybridation: Procedure/Functions
Default values and named Arguments

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 8 / 61

Functions: Side effects

Using functions with side effects is very dangerous. For instance:

foo = getc () + getc () * getc ();

is undefined (6= nondeterministic). On purpose!

TYLA Subprograms May 16, 2019 9 / 61

Table of Contents

1 Routines
Procedures vs. Functions
Hybridation: Procedure/Functions
Default values and named Arguments

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 10 / 61

Default arguments

int sum(int a, int b = 21, int c = 42,

int d = 42){

return a + b + c + d;

}

Default Arguments in C++

sum(1, 2, 3, 4) is fine

sum(1, 2) is also fine

But what if we want to call sum (b = 1, a = 2) with c’s and d’s
default value?

TYLA Subprograms May 16, 2019 11 / 61

Named Argument (Some sugar)
In Ada, named arguments and/or default values:

put (number : in float;

before : in integer := 2;

after : in integer := 2;

exponent : in integer := 2) ...

Some Ada function declaration

put (pi, 1, 2, 3);

put (pi, 1);

put (pi, 2, 2, 4);

put (pi, before => 2,

after => 2, exponent => 4);

put (pi, exponent => 4);

Possible invocations

TYLA Subprograms May 16, 2019 12 / 61

Named Arguments

Named parameters are availables in many languages: Perl, Python,
C#, Fortran95, Go, Haskell, Lua, Ocaml, Lisp, Scala,
Swift/ObjectiveC (fixed order of named parameters!), . . .

No need to remember the order of parameters

No need to guess specific default’s values

More Flexible

Clarity

TYLA Subprograms May 16, 2019 13 / 61

Simulate Named Argument

Can we simulate named arguments in C++ or Java?

Yes : Named parameter idiom uses a proxy object for passing the
parameters.

TYLA Subprograms May 16, 2019 14 / 61

Named Parameter Idiom 1/2
class foo_param{

private:

int a = 0, b = 0;

foo_param () = default; // make it private

public:

foo_param& with_a(int provided){

a = provided; return *this;

}

foo_param& with_b(int provided){

b = provided; return *this;

}

static foo_param create (){

return foo_param ();

}

};

TYLA Subprograms May 16, 2019 15 / 61

Named Parameter Idiom 2/2

void foo(foo_param& f)

{

// ...

}

foo(foo_param :: create (). with_b (1)

.with_a (2));

Works ... but require one specific class per function

For C++, Boost::Parameter library also offer a generic
implementation

TYLA Subprograms May 16, 2019 16 / 61

Named Parameter Idiom 2/2

void foo(foo_param& f)

{

// ...

}

foo(foo_param :: create (). with_b (1)

.with_a (2));

Works ... but require one specific class per function

For C++, Boost::Parameter library also offer a generic
implementation

TYLA Subprograms May 16, 2019 16 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 17 / 61

Argument passing
From a naive point of view (and for strict evaluation), three possible modes:
in, out, in-out. But there are different flavors.

V
al

V
al

C
on

st

R
ef

C
on

st

R
es

R
ef

V
al

R
es

N
am

e

ALGOL 60 * *
Fortran ? ?
PL/1 ? ?
ALGOL 68 * *
Pascal * *
C * ? ?
Modula 2 * ?
Ada (simple types) * * *
Ada (others) ? ? ? ? ?
Alphard * * *

TYLA Subprograms May 16, 2019 18 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 19 / 61

Call by Value – definition

Passing arguments to a function copies the actual value of an
argument into the formal parameter of the function.

In this case, changes made to the parameter inside the function have
no effect on the argument.

def foo(val):

val = 1

i = 12

print (i)

Call by value in Python – output: 12

TYLA Subprograms May 16, 2019 20 / 61

Pros & Cons

Safer: variables cannot be accidentally modified

Copy: variables are copied into formal parameter even for huge
data

Evaluation before call: resolution of formal parameters must
be done before a call

I Left-to-right: Java, Common Lisp, Effeil, C#, Forth
I Right-to-left: Caml, Pascal
I Unspecified: C, C++, Delphi, , Ruby

TYLA Subprograms May 16, 2019 21 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 22 / 61

Call by Reference – definition

Passing arguments to a function copies the actual address of an
argument into the formal parameter of the function.

In this case, changes made to the parameter inside the function will
have effect on the argument.

void swap(int &x, int &y)

{ int aux = x; x = y; y = aux; }

int main() {

int x = 2, y = 3;

swap(a, b);

printf("%d, %d\n", x, y);

}

Call by reference in C++ – output: 3 2

TYLA Subprograms May 16, 2019 23 / 61

Pros & Cons

Faster than call-by-value if data structure have a large size.

Readability & Undesirable behavior: a special attention may
be considered when doing operations on multiple references
since they can all refer to the same object

void xor_swap(int &x, int &y) {

x = x ^ y;

y = x ^ y;

x = x ^ y;

}

Call by reference in C++ may lead to undesirable behavior when x and
y refers the same object (zeroing x and y)

TYLA Subprograms May 16, 2019 24 / 61

Notes on call-by-reference

swap(foo, foo) is forbidden in Pascal but what about
swap(foo[bar], foo[baz]) ...

TYLA Subprograms May 16, 2019 25 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 26 / 61

Call by Value-Result – definition

Passing arguments to a function copies the argument into the formal
parameter of the function.
The values are then copied back when exiting the function

In this case, changes made to the parameter inside the function will
only reflect on the argument at the end of the function.

TYLA Subprograms May 16, 2019 27 / 61

Call by Value-Result – Example

procedure Tryit is

procedure swap (i1, i2: in out integer) is

tmp: integer;

begin

tmp := i1; i1 := i2; i2 := tmp;

end swap;

a : integer := 1; b : integer := 2;

begin

swap(a, b);

Put_Line(Integer ’Image (a) & " " &

Integer ’Image (b)) ;

end Tryit;

Call by Value-result in Ada – output: 2 1

TYLA Subprograms May 16, 2019 28 / 61

Notes on call-by-value-result
Pros & Cons

Safety other thread will only see consistent values since changes
made will not show up until after the end of the function.

Local copies: but they can be sometimes avoided by the
compiler

Remarks:

Also called: Call by copy-restore, Call by copy-in copy-out

If the reference is passed to the callee uninitialized, this
evaluation strategy is called call by result.

Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once, during function call
I AlgolW: Evaluates arguments during call AND when exiting the

function

TYLA Subprograms May 16, 2019 29 / 61

Notes on call-by-value-result
Pros & Cons

Safety other thread will only see consistent values since changes
made will not show up until after the end of the function.

Local copies: but they can be sometimes avoided by the
compiler

Remarks:

Also called: Call by copy-restore, Call by copy-in copy-out

If the reference is passed to the callee uninitialized, this
evaluation strategy is called call by result.

Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once, during function call
I AlgolW: Evaluates arguments during call AND when exiting the

function

TYLA Subprograms May 16, 2019 29 / 61

Notes on call-by-value-result
Pros & Cons

Safety other thread will only see consistent values since changes
made will not show up until after the end of the function.

Local copies: but they can be sometimes avoided by the
compiler

Remarks:

Also called: Call by copy-restore, Call by copy-in copy-out

If the reference is passed to the callee uninitialized, this
evaluation strategy is called call by result.

Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once, during function call
I AlgolW: Evaluates arguments during call AND when exiting the

function

TYLA Subprograms May 16, 2019 29 / 61

Notes on call-by-value-result
Pros & Cons

Safety other thread will only see consistent values since changes
made will not show up until after the end of the function.

Local copies: but they can be sometimes avoided by the
compiler

Remarks:

Also called: Call by copy-restore, Call by copy-in copy-out

If the reference is passed to the callee uninitialized, this
evaluation strategy is called call by result.

Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once, during function call
I AlgolW: Evaluates arguments during call AND when exiting the

function

TYLA Subprograms May 16, 2019 29 / 61

Notes on call-by-value-result
Pros & Cons

Safety other thread will only see consistent values since changes
made will not show up until after the end of the function.

Local copies: but they can be sometimes avoided by the
compiler

Remarks:

Also called: Call by copy-restore, Call by copy-in copy-out

If the reference is passed to the callee uninitialized, this
evaluation strategy is called call by result.

Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once, during function call
I AlgolW: Evaluates arguments during call AND when exiting the

function

TYLA Subprograms May 16, 2019 29 / 61

Notes on call-by-value-result
Pros & Cons

Safety other thread will only see consistent values since changes
made will not show up until after the end of the function.

Local copies: but they can be sometimes avoided by the
compiler

Remarks:

Also called: Call by copy-restore, Call by copy-in copy-out

If the reference is passed to the callee uninitialized, this
evaluation strategy is called call by result.

Used in multiprocessing contexts.

Multiple interpretations:
I Ada: Evaluates arguments once, during function call
I AlgolW: Evaluates arguments during call AND when exiting the

function
TYLA Subprograms May 16, 2019 29 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 30 / 61

An outsider: call by name

(In ALGOL 60) It behaves as a macro would, including with name
captures: the argument is evaluated at each use.

Try to write some code which results in a completely different
result had SWAP been a function.

#define SWAP(Foo , Bar) \

do { \

int tmp_ = (Foo); \

(Foo) = (Bar); \

(Bar) = tmp_; \

} while (0)

In ALGOL 60, a compiled language, “thunks” were introduced:
snippets of code that return the l-value when evaluated.

TYLA Subprograms May 16, 2019 31 / 61

An application of call by name: Jensen’s Device
General computation of a sum of a series

∑u
k=l ak :

real procedure Sum(k, l, u, ak)

value l, u;

integer k, l, u;

real ak;

comment ‘k’ and ‘ak ’ are passed by name;

begin

real s;

s := 0;

for k := l step 1 until u do

s := s + ak;

Sum := s

end;

Computing the first 100 terms of a real array V[]:

Sum(i, 1, 100, V[i])

TYLA Subprograms May 16, 2019 32 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 33 / 61

Call by Need

Call by need is a memoized variant of call by name where, if the
function argument is evaluated, that value is stored for subsequent
uses.

The argument is then evaluated only once, during its first use.

What if y = 0 in the following code?

let function loop (z: int):int =

if z > 0 then z else loop (z)

function f (x: int):int =

if y > 8 then x else -y

in

/* ≡ ‘if y > 8 then loop (y) else -y’ ? */

f (loop (y))

end

TYLA Subprograms May 16, 2019 34 / 61

Call by name
Don’t pass the evaluation of the expression, but a “thunk”
computing it:

let var a := 5 + 7 in

a + 10

end

==> let function a () := 5 + 7 in

a () + 10

end

Call by need
The thunk is evaluated once and only once. Add a “memo” field.

TYLA Subprograms May 16, 2019 35 / 61

Lazy evaluation 1
easydiff f x h = (f (x + h) - f (x)) / h

repeat f a = a : repeat f (f a)

halve x = x / 2

differentiate h0 f x = map (easydiff f x) (repeat halve h0)

within eps (a : b : rest)

| abs (b - a) <= eps = b

| otherwise = within eps (b : rest)

relative eps (a : b : rest)) =

| abs (b - a) <= eps * abs b = b

| otherwise = relative eps (b : rest)

within eps (differentiate h0 f x)

Slow convergence. . . Suppose the existence of an error term:

a (i) = A + B * (2 ** n) * (h ** n)

a (i + 1) = A + B * (h ** n)

TYLA Subprograms May 16, 2019 36 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 37 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val

6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val

6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W)

6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada)

4 2 2
Ref 9 2 2
Name 6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref

9 2 2
Name 6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name

6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Exhibit the differences (Explicit lyrics. . .)

var t : integer

foo: array [1..2] of integer;

procedure shoot_my (x : Mode integer);

begin

foo[1] := 6;

t := 2;

x := x + 3;

end;

begin

foo[1] := 1;

foo[2] := 2;

t := 1;

shoot_my (foo[t]);

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

TYLA Subprograms May 16, 2019 38 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)
Call by Value
Call by Reference
Call by Value-Result
Call by Name
Call by Need
Summary
A note on Call by sharing

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 39 / 61

Call by Sharing – definition

Call by sharing implies that values in the language are based on
objects rather than primitive types, i.e. that all values are ”boxed”

Differs from both call-by-value and call-by-reference.

def f(list):

list.append (1)

m = []

f(m)

print(m)

Call by sharing in Python –
output: [1]

def f(list):

list = [1]

m = []

f(m)

print(m)

Call by sharing in Python –
output: []

TYLA Subprograms May 16, 2019 40 / 61

Notes on Call-by-sharing

Mutations of arguments perforsmall by the called routine
will be visible to the caller.

Access is not given to the variables of the caller,
but merely to certain objects

Can be seen as ”call by value” in the case where the value is an
object reference

First introduced by Barbara Liskov for CLU language (1974)

Widely used by: Python, Java, Ruby, JavaScript, Scheme,
OCaml, AppleScript, ...

call by sharing is not in common use; the terminology is
inconsistent across different sources.

TYLA Subprograms May 16, 2019 41 / 61

Notes on Call-by-sharing

Mutations of arguments perforsmall by the called routine
will be visible to the caller.

Access is not given to the variables of the caller,
but merely to certain objects

Can be seen as ”call by value” in the case where the value is an
object reference

First introduced by Barbara Liskov for CLU language (1974)

Widely used by: Python, Java, Ruby, JavaScript, Scheme,
OCaml, AppleScript, ...

call by sharing is not in common use; the terminology is
inconsistent across different sources.

TYLA Subprograms May 16, 2019 41 / 61

Notes on Call-by-sharing

Mutations of arguments perforsmall by the called routine
will be visible to the caller.

Access is not given to the variables of the caller,
but merely to certain objects

Can be seen as ”call by value” in the case where the value is an
object reference

First introduced by Barbara Liskov for CLU language (1974)

Widely used by: Python, Java, Ruby, JavaScript, Scheme,
OCaml, AppleScript, ...

call by sharing is not in common use; the terminology is
inconsistent across different sources.

TYLA Subprograms May 16, 2019 41 / 61

Notes on Call-by-sharing

Mutations of arguments perforsmall by the called routine
will be visible to the caller.

Access is not given to the variables of the caller,
but merely to certain objects

Can be seen as ”call by value” in the case where the value is an
object reference

First introduced by Barbara Liskov for CLU language (1974)

Widely used by: Python, Java, Ruby, JavaScript, Scheme,
OCaml, AppleScript, ...

call by sharing is not in common use; the terminology is
inconsistent across different sources.

TYLA Subprograms May 16, 2019 41 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 42 / 61

Return Statement

What is the purpose of the return statement?

Is there a best way to return something?

Is there a best way to return something?

TYLA Subprograms May 16, 2019 43 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement
return via dedicated keyword
return via function’s name
return via specific variable
return the last computed value
named return values

4 Fonctions as Values

TYLA Subprograms May 16, 2019 44 / 61

Return via a dedicated keyword 1/2

int compute(int a, int b) {

int res = a+b;

// Some computation

return res;

}

C’s return statement uses the return keyword

int compute(int a, int b) {

int r_val = a+b;

// Some computation

return r_val;

}

Java’s return statement also uses the return keyword

TYLA Subprograms May 16, 2019 45 / 61

Return via a dedicated keyword 2/2

The return statement breaks the current fonction (also for C++,
Java, Ada, Modula2).

Clarity

Complexify the code
I No naming convention
I No homogeneous return inside a given fonction
I Blur the comprehension via initialisation, intermediate

computation, . . .

TYLA Subprograms May 16, 2019 46 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement
return via dedicated keyword
return via function’s name
return via specific variable
return the last computed value
named return values

4 Fonctions as Values

TYLA Subprograms May 16, 2019 47 / 61

Return via function’s name

function sum (a, b: integer): integer;

begin

sum := a + b;

end;

Pascal’s return statement uses the name of the function

The name of the function is treated as a variable name (also for
Fortran, ALGOL, ALGOL68, Simula)

The “return” may not be the latest statement

Ambiguous
I For recursion sum denotes a variable AND a function
I Is somevar := sum legal? (Yes for Pascal, No for Fortan)

TYLA Subprograms May 16, 2019 48 / 61

Return via function’s name

function sum (a, b: integer): integer;

begin

sum := a + b;

end;

Pascal’s return statement uses the name of the function

The name of the function is treated as a variable name (also for
Fortran, ALGOL, ALGOL68, Simula)

The “return” may not be the latest statement

Ambiguous
I For recursion sum denotes a variable AND a function
I Is somevar := sum legal? (Yes for Pascal, No for Fortan)

TYLA Subprograms May 16, 2019 48 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement
return via dedicated keyword
return via function’s name
return via specific variable
return the last computed value
named return values

4 Fonctions as Values

TYLA Subprograms May 16, 2019 49 / 61

Return via a specific variable (1/2)
always_true : BOOLEAN

do

Result := true

end

always_one : INTEGER

do

Result := 1

end

always_bar : STRING

do

Result := "bar"

end

Effeil’s return statement uses the keyword Result

TYLA Subprograms May 16, 2019 50 / 61

Return via a specific variable (2/2)

The value returned by a function is whatever value is in Result
when the function ends.

The return value of a feature is set by assigning it to the Result
variable (initialised automatically to a default value).

Unlike other languages, the return statement does not exist.

Only in Effeil (to my knowledge)

Clarity

Ambiguous if the langage support nested fonctions

TYLA Subprograms May 16, 2019 51 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement
return via dedicated keyword
return via function’s name
return via specific variable
return the last computed value
named return values

4 Fonctions as Values

TYLA Subprograms May 16, 2019 52 / 61

Return the last computed value 1 /2

(defun double (x) (* x 2))

Lisp’s return value is the last computed value

fn is_divisible_by(lhs: u32, rhs: u32) -> bool {

if rhs == 0 {

return false;

}

// The ‘return ‘ keyword isn ’t necessary

lhs % rhs == 0

}

For expressions, Rust’s return value is the last computed value

TYLA Subprograms May 16, 2019 53 / 61

Return the last computed value 2 /2

In expression-oriented programming language (also Lisp, Perl,
Javascript and Ruby) the return statement can omitted.

Instead that the last evaluated expression is the return value.

A ”last expression” is mandatory in Rust

If no “return” Python returns None and Javascript undefined

TYLA Subprograms May 16, 2019 54 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement
return via dedicated keyword
return via function’s name
return via specific variable
return the last computed value
named return values

4 Fonctions as Values

TYLA Subprograms May 16, 2019 55 / 61

Named return values and Naked return

func make(r int, i int) (re int, im int) {

re = r

im = i

return

}

Go combines Named returns values and naked return

No declaration/initialisation in the body of the function

It serves as documentation.

Functions that return multiple values are hard to name clearly
GetUsernameAndPassword

The signature of the function is slightly more difficult to read

TYLA Subprograms May 16, 2019 56 / 61

Named return values and Naked return

func make(r int, i int) (re int, im int) {

re = r

im = i

return

}

Go combines Named returns values and naked return

No declaration/initialisation in the body of the function

It serves as documentation.

Functions that return multiple values are hard to name clearly
GetUsernameAndPassword

The signature of the function is slightly more difficult to read

TYLA Subprograms May 16, 2019 56 / 61

Table of Contents

1 Routines

2 Evaluation strategy (Argument Passing)

3 Return Statement

4 Fonctions as Values

TYLA Subprograms May 16, 2019 57 / 61

Subprograms as arguments

function diff (f(x: real): real ,

x, h: real) : real;

begin

if h = 0 then

slope := 0

else

slope := (f (x + h) - f (x)) / h;

diff := slope

end

begin

...

diff (sin , 1, 0.01);

...

end

Typing difficulties ignored
in ALGOL 60, Fortran,
original Pascal and C: the
function-argument was not
typed.

Today function types are
available in most
languages (except in some
ool).

Doesn’t exist in Ada.
Simulated by a function
parametrized routine. But
you have to instantiate. . .

TYLA Subprograms May 16, 2019 58 / 61

Anonymous subprograms
In all the functional languages, but not only (see automake). . .

use Getopt ::Long;

Getopt ::Long:: config ("bundling", "pass_through");

Getopt ::Long:: GetOptions

(

’version ’ => &version ,

’help’ => &usage ,

’libdir:s’ => $libdir ,

’gnu’ => sub { set_strictness (’gnu’); },

’gnits ’ => sub { set_strictness (’gnits’); },

’cygnus ’ => $cygnus_mode ,

’foreign ’ => sub { set_strictness (’foreign ’); },

’include -deps’ => sub { $use_dependencies = 1; },

’i|ignore -deps’ => sub { $use_dependencies = 0; },

’no-force ’ => sub { $force_generation = 0; },

’o|output -dir:s’ => $output_directory ,

’v|verbose ’ => $verbose ,

)

or exit 1;

TYLA Subprograms May 16, 2019 59 / 61

Environment capture
Functional languages with block structure.

let type intfun = int -> int

function add (n: int) : intfun =

let function res (m: int): int = n + m in res end

var addFive : intfun := add (5)

var addTen := add (10)

var twenty := addTen (addFive (5))

in

twenty = 20

end

Create closures: a pointer to the (runtime) environment in addition
to a pointer to the code. Somewhat hard to implement [Chap.
15](appel.98.modern).

TYLA Subprograms May 16, 2019 60 / 61

TYLA Subprograms May 16, 2019 61 / 61

	Routines
	Procedures vs. Functions
	Hybridation: Procedure/Functions
	Default values and named Arguments

	Evaluation strategy (Argument Passing)
	Call by Value
	Call by Reference
	Call by Value-Result
	Call by Name
	Call by Need
	Summary
	A note on Call by sharing

	Return Statement
	return via dedicated keyword
	return via function's name
	return via specific variable
	return the last computed value
	named return values

	Fonctions as Values

