
Objects

Akim Demaille, Etienne Renault, Roland Levillain

April 8, 2019

TYLA Objects April 8, 2019 1 / 141

Part I

Object Oriented History

TYLA Objects April 8, 2019 2 / 141

Table of Contents

1 Simula

2 Smalltalk

3 The mysterious language

TYLA Objects April 8, 2019 3 / 141

Table of Contents

1 Simula
People Behind SIMULA
SIMULA I
Simula 67

2 Smalltalk

3 The mysterious language

TYLA Objects April 8, 2019 4 / 141

Simula

Ole-Johan Dahl

TYLA Objects April 8, 2019 5 / 141

Simula

Ole-Johan Dahl

TYLA Objects April 8, 2019 6 / 141

Simula

Dahl & Nygaard

TYLA Objects April 8, 2019 7 / 141

Simula

Ole-Johan Dahl & Kristen Nygaard (ca. 1963)

TYLA Objects April 8, 2019 8 / 141

Simula

Nygaard & Dahl: Turing Award 2001

TYLA Objects April 8, 2019 9 / 141

2002... Sad Year
Ole-Johan Dahl Kristen Nygaard Edsger Wybe

Dijkstra

Oct 12, 1931,
Mandal, NO

Aug 27, 1926, Oslo,
NO

May 11, 1930,
Rotterdam, NL

June 29, 2002, Asker,
NO

Aug 10, 2002, Oslo,
NO

Aug 06, 2002,
Nuenen, NL

“...are there too many
basic mechanisms

floating around doing
nearly the same

thing?”

“To program is to
understand!”

“Do only what only
you can”

Table of Contents

1 Simula
People Behind SIMULA
SIMULA I
Simula 67

2 Smalltalk

3 The mysterious language

TYLA Objects April 8, 2019 11 / 141

Simula

In the spring of 1967 a new employee at the NCC in a very

shocked voice told the switchboard operator: “two men are

fighting violently in front of the blackboard in the upstairs

corridor. What shall we do?” The operator came out of her

o�ce, listened for a few seconds and then said: “Relax, it’s

only Dahl and Nygaard discussing SIMULA.” — Kristen

Nygaard, Ole-Johan Dahl.

Physical system models. Norwegian nuclear power plant program.

Process oriented discrete simulation language based on Algol 60.
(1964 - 1965) Simulation language.

TYLA Objects April 8, 2019 12 / 141

Simula

In the spring of 1967 a new employee at the NCC in a very

shocked voice told the switchboard operator: “two men are

fighting violently in front of the blackboard in the upstairs

corridor. What shall we do?” The operator came out of her

o�ce, listened for a few seconds and then said: “Relax, it’s

only Dahl and Nygaard discussing SIMULA.” — Kristen

Nygaard, Ole-Johan Dahl.

Physical system models. Norwegian nuclear power plant program.

Process oriented discrete simulation language based on Algol 60.
(1964 - 1965) Simulation language.

TYLA Objects April 8, 2019 12 / 141

Basic concepts (1/2)

A system, consisting of a finite and fixed number of
active components named stations, and a finite, but possibly
variable number of passive components named customers.

A station consisting of two parts: a queue part and a
service part. Actions associated with the service part, named the
station’s operating rule, were described by a sequence of
ALGOL (or ALGOL-like) statements.

A customer with no operating rule, but possibly a finite number
of variables, named characteristics .

A real, continuous variable called time and a function

position, defined for all customers and all values of time.

TYLA Objects April 8, 2019 13 / 141

Basic concepts (1/2)

A system, consisting of a finite and fixed number of
active components named stations, and a finite, but possibly
variable number of passive components named customers.

A station consisting of two parts: a queue part and a
service part. Actions associated with the service part, named the
station’s operating rule, were described by a sequence of
ALGOL (or ALGOL-like) statements.

A customer with no operating rule, but possibly a finite number
of variables, named characteristics .

A real, continuous variable called time and a function

position, defined for all customers and all values of time.

TYLA Objects April 8, 2019 13 / 141

Basic concepts (1/2)

A system, consisting of a finite and fixed number of
active components named stations, and a finite, but possibly
variable number of passive components named customers.

A station consisting of two parts: a queue part and a
service part. Actions associated with the service part, named the
station’s operating rule, were described by a sequence of
ALGOL (or ALGOL-like) statements.

A customer with no operating rule, but possibly a finite number
of variables, named characteristics .

A real, continuous variable called time and a function

position, defined for all customers and all values of time.

TYLA Objects April 8, 2019 13 / 141

Basic concepts (1/2)

A system, consisting of a finite and fixed number of
active components named stations, and a finite, but possibly
variable number of passive components named customers.

A station consisting of two parts: a queue part and a
service part. Actions associated with the service part, named the
station’s operating rule, were described by a sequence of
ALGOL (or ALGOL-like) statements.

A customer with no operating rule, but possibly a finite number
of variables, named characteristics .

A real, continuous variable called time and a function

position, defined for all customers and all values of time.

TYLA Objects April 8, 2019 13 / 141

Basic concepts (2/2)

This structure may be regarded as a network, and the events
(actions) of the stations’ service parts are regarded as instantaneous
and occurring at discrete points of time, this class of systems
was named discrete event networks.

TYLA Objects April 8, 2019 14 / 141

Simula I

An ALGOL 60 preprocessor

A subprogram library

An original per “process” stack allocation scheme

Not yet the concept of objects.

Quasi-parallel processing is analogous to the notion of coroutines
described by Conway in 1963.

TYLA Objects April 8, 2019 15 / 141

Table of Contents

1 Simula
People Behind SIMULA
SIMULA I
Simula 67

2 Smalltalk

3 The mysterious language

TYLA Objects April 8, 2019 16 / 141

Simula 67

Introduces:

I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,

I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,

I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),

I the concept of inheritance
(introduced by C. A. R. Hoare for records),

I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),

I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,

I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for records),
I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare, N. Wirth and D. Knuth.

Standardized ISO 1987.

TYLA Objects April 8, 2019 17 / 141

Shape in Simula (1/5)
class Shape(x, y); integer x; integer y;
virtual: procedure draw is procedure draw;;
begin

comment -- get the x & y components for the object --;
integer procedure getX;

getX := x;
integer procedure getY;

getY := y;
comment -- set the x & y coordinates for the object --;
integer procedure setX(newx); integer newx;

x := newx;
integer procedure setY(newy); integer newy;

y := newy;
comment -- move the x & y position of the object --;
procedure moveTo(newx , newy); integer newx; integer newy;

begin
setX(newx);
setY(newy);

end moveTo;
procedure rMoveTo(deltax , deltay); integer deltax; integer deltay;

begin
setX(deltax + getX);
setY(deltay + getY);

end moveTo;
end Shape;

Shape in Simula (2/5)
Shape class Rectangle(width , height);

integer width; integer height;
begin

comment -- get the width & height of the object --;
integer procedure getWidth;

getWidth := width;
integer procedure getHeight;

getHeight := height;
comment -- set the width & height of the object --;
integer procedure setWidth(newwidth); integer newwidth;

width := newwidth;
integer procedure setHeight(newheight); integer newheight;

height := newheight;
comment -- draw the rectangle --;
procedure draw;

begin
Outtext("Drawing a Rectangle at:(");
Outint(getX , 0); Outtext(","); Outint(getY , 0);
Outtext("), width "); Outint(getWidth , 0);
Outtext(", height "); Outint(getHeight , 0);
Outimage;

end draw;
end Rectangle;

Shape in Simula (3/5)
Shape class Circle(radius); integer radius;
begin

comment -- get the radius of the object --;
integer procedure getRadius;

getRadius := radius;

comment -- set the radius of the object --;
integer procedure setRadius(newradius); integer newradius;

radius := newradius;

comment -- draw the circle --;
procedure draw;

begin
Outtext("Drawing a Circle at:(");
Outint(getX , 0);
Outtext(",");
Outint(getY , 0);
Outtext("), radius ");
Outint(getRadius , 0);
Outimage;

end draw;
end Circle;

Shape in Simula (4/5)
comment -- declare the variables used --;
ref(Shape) array scribble (1:2);
ref(Rectangle) arectangle;
integer i;

comment -- populate the array with various shape instances --;
scribble (1) :- new Rectangle (10, 20, 5, 6);
scribble (2) :- new Circle (15, 25, 8);

comment -- iterate on the list , handle shapes polymorphically --;
for i := 1 step 1 until 2 do

begin
scribble(i).draw;
scribble(i). rMoveTo (100, 100);
scribble(i).draw;

end;

comment -- call a rectangle specific instance --;
arectangle :- new Rectangle (0, 0, 15, 15);
arectangle.draw;
arectangle.setWidth (30);
arectangle.draw;

Shape in Simula – Execution (5/5)

> cim shape.sim
Compiling shape.sim:
gcc -g -O2 -c shape.c
gcc -g -O2 -o shape shape.o -L/usr/local/lib -lcim
> ./ shape
Drawing a Rectangle at:(10 ,20), width 5, height 6
Drawing a Rectangle at:(110 ,120) , width 5, height 6
Drawing a Circle at:(15,25), radius 8
Drawing a Circle at:(115 ,125) , radius 8
Drawing a Rectangle at:(0,0), width 15, height 15
Drawing a Rectangle at:(0,0), width 30, height 15

TYLA Objects April 8, 2019 22 / 141

Impact of Simula 67

All the object-oriented languages inherit from Simula.

Smalltalk further with object orientation,
further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Ei↵el further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

TYLA Objects April 8, 2019 23 / 141

Impact of Simula 67

All the object-oriented languages inherit from Simula.

Smalltalk further with object orientation,
further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Ei↵el further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

TYLA Objects April 8, 2019 23 / 141

Impact of Simula 67

All the object-oriented languages inherit from Simula.

Smalltalk further with object orientation,
further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Ei↵el further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

TYLA Objects April 8, 2019 23 / 141

Impact of Simula 67

All the object-oriented languages inherit from Simula.

Smalltalk further with object orientation,
further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Ei↵el further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

TYLA Objects April 8, 2019 23 / 141

Impact of Simula 67

All the object-oriented languages inherit from Simula.

Smalltalk further with object orientation,
further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Ei↵el further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

TYLA Objects April 8, 2019 23 / 141

Impact of Simula 67

All the object-oriented languages inherit from Simula.

Smalltalk further with object orientation,
further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Ei↵el further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

TYLA Objects April 8, 2019 23 / 141

Table of Contents

1 Simula

2 Smalltalk

3 The mysterious language

TYLA Objects April 8, 2019 24 / 141

Smalltalk

We called Smalltalk Smalltalk so that nobody would expect anything

from it.

– Alan Kay

Principles:

Everything is object;

Every object is described by its class (structure, behavior);

Message passing is the only interface to objects.

Origin:

A programming language that children can understand;

To create “tomorrow’s computer”: Dynabook.

TYLA Objects April 8, 2019 25 / 141

Table of Contents

1 Simula

2 Smalltalk
The People Behind Smalltalk
Smalltalk 72
Smalltalk 76
Smalltalk 80

3 The mysterious language

TYLA Objects April 8, 2019 26 / 141

Alan Kay

TYLA Objects April 8, 2019 27 / 141

Quote

I invented the term Object-Oriented and I can tell you I did not have
C++ in mind.
– A. Kay

TYLA Objects April 8, 2019 28 / 141

Alan Kay, 1984

TYLA Objects April 8, 2019 29 / 141

Alan Kay

TYLA Objects April 8, 2019 30 / 141

Ivan Sutherland’s Sketchpad 1967

TYLA Objects April 8, 2019 31 / 141

Douglas Engelbart’s NLS 1974

TYLA Objects April 8, 2019 32 / 141

Flex Machine 1967

TYLA Objects April 8, 2019 33 / 141

DynaBook
It would have, ”enough power

to outrace your senses of sight

and hearing, enough capacity to

store for later retrieval

thousands of page-equivalents

of reference material, poems,

letter, recipes, records,

drawings, animations, musical

scores, waveforms, dynamic

simulations, and anything else

you would like to remember and

change...”.

To put this project in context, the smallest general purpose computer
in the early 1970s was about the size of a desk and the word
“multimedia” meant a slide-tape presentation.

TYLA Objects April 8, 2019 34 / 141

DynaBook
It would have, ”enough power

to outrace your senses of sight

and hearing, enough capacity to

store for later retrieval

thousands of page-equivalents

of reference material, poems,

letter, recipes, records,

drawings, animations, musical

scores, waveforms, dynamic

simulations, and anything else

you would like to remember and

change...”.

To put this project in context, the smallest general purpose computer
in the early 1970s was about the size of a desk and the word
“multimedia” meant a slide-tape presentation.

TYLA Objects April 8, 2019 34 / 141

DynaBook

TYLA Objects April 8, 2019 35 / 141

Table of Contents

1 Simula

2 Smalltalk
The People Behind Smalltalk
Smalltalk 72
Smalltalk 76
Smalltalk 80

3 The mysterious language

TYLA Objects April 8, 2019 36 / 141

Smalltalk 72

Written in BASIC.

Reuses the classes and instances from Simula 67.

Adds the concept of “message”.
Dynamic method lookup.

TYLA Objects April 8, 2019 37 / 141

Smalltalk 72 Sample

to Point
| x y
(
isnew => ("x <- :.

"y <- :.)
<) x

=> (<) <- => ("x <- :)
^ x)

<) y
=> (<) <- => ("y <- :)

^ y)
<) print => ("(print.

x print.
", print.
y print.
") print .)

)
=> Point

center <- Point 0 0
=> (0,0)
center x <- 3
=> (3,0)
center x print
=> 3

TYLA Objects April 8, 2019 38 / 141

Classes and Instances in Smalltalk 72

Point

x, y

print

x, x <−

y, y <−

x, y

print

x, x <−

y, y <−

ColorPoint

color, color <−

to

print

instance instance
instance instance

TYLA Objects April 8, 2019 39 / 141

Smalltalk 72 Criticisms

to is a primitive, not a method.

A class is not an object.

The programmer implements the method lookup.

Method lookup is too slow.

No inheritance.

) Programmers were using global procedures.
But some successes:

Pygmalion
“Programming by examples”
inspired Star.

TYLA Objects April 8, 2019 40 / 141

Table of Contents

1 Simula

2 Smalltalk
The People Behind Smalltalk
Smalltalk 72
Smalltalk 76
Smalltalk 80

3 The mysterious language

TYLA Objects April 8, 2019 41 / 141

Smalltalk 76

Introduction of the Class class.
The class of classes. Instance of itself. Metaclass. How to print
a class, add method, instantiate etc.

Introduction of the Object class.
Default behavior, shared between all the objects.

Introduction of dictionaries.
Message handling is no longer handled by the programmers.

Introduction of inheritance.

Removal of the to primitive.
Replaced by the new message sent to Class:

Class new title: ’Rectangle ’;
fields: ’origin corner ’.

TYLA Objects April 8, 2019 42 / 141

Smalltalk 76

Introduction of the Class class.
The class of classes. Instance of itself. Metaclass. How to print
a class, add method, instantiate etc.

Introduction of the Object class.
Default behavior, shared between all the objects.

Introduction of dictionaries.
Message handling is no longer handled by the programmers.

Introduction of inheritance.

Removal of the to primitive.
Replaced by the new message sent to Class:

Class new title: ’Rectangle ’;
fields: ’origin corner ’.

TYLA Objects April 8, 2019 42 / 141

Smalltalk 76

Introduction of the Class class.
The class of classes. Instance of itself. Metaclass. How to print
a class, add method, instantiate etc.

Introduction of the Object class.
Default behavior, shared between all the objects.

Introduction of dictionaries.
Message handling is no longer handled by the programmers.

Introduction of inheritance.

Removal of the to primitive.
Replaced by the new message sent to Class:

Class new title: ’Rectangle ’;
fields: ’origin corner ’.

TYLA Objects April 8, 2019 42 / 141

Smalltalk 76

Introduction of the Class class.
The class of classes. Instance of itself. Metaclass. How to print
a class, add method, instantiate etc.

Introduction of the Object class.
Default behavior, shared between all the objects.

Introduction of dictionaries.
Message handling is no longer handled by the programmers.

Introduction of inheritance.

Removal of the to primitive.
Replaced by the new message sent to Class:

Class new title: ’Rectangle ’;
fields: ’origin corner ’.

TYLA Objects April 8, 2019 42 / 141

Smalltalk 76

Introduction of the Class class.
The class of classes. Instance of itself. Metaclass. How to print
a class, add method, instantiate etc.

Introduction of the Object class.
Default behavior, shared between all the objects.

Introduction of dictionaries.
Message handling is no longer handled by the programmers.

Introduction of inheritance.

Removal of the to primitive.
Replaced by the new message sent to Class:

Class new title: ’Rectangle ’;
fields: ’origin corner ’.

TYLA Objects April 8, 2019 42 / 141

Instantiation, inheritance in Smalltalk 76

Object

Number

Integer

String

Class

Superclass

Instance de

Objects keep a link with their generator: is-instance-of

TYLA Objects April 8, 2019 43 / 141

Smalltalk 76 Criticism

Significant improvement:
I Byte-code and a virtual machine provide a 4-100 speedup.
I ThingLab, constraint system experimentation.
I PIE, Personal Information Environment.

But:
I A single metaclass

hence a single behavior for classes
(no specific constructors, etc.).

TYLA Objects April 8, 2019 44 / 141

Smalltalk 76 Criticism

Significant improvement:
I Byte-code and a virtual machine provide a 4-100 speedup.
I ThingLab, constraint system experimentation.
I PIE, Personal Information Environment.

But:
I A single metaclass

hence a single behavior for classes
(no specific constructors, etc.).

TYLA Objects April 8, 2019 44 / 141

Table of Contents

1 Simula

2 Smalltalk
The People Behind Smalltalk
Smalltalk 72
Smalltalk 76
Smalltalk 80

3 The mysterious language

TYLA Objects April 8, 2019 45 / 141

Smalltalk 80

Deep impact over computer science of the 80’s.

Most constructors take part
(Apple, Apollo, DEC, HP, Tektronix...).

Generalization of the metaclass concept.

TYLA Objects April 8, 2019 46 / 141

Is-instance-of in Smalltalk 80

Metaclass class

Class classMetaclass

Float class Object Class

Float Object

Class

Three layer model:

Metaclass. Class behavior (instantiation, initialization, etc.).

Class. Type and behavior of objects.

Instances. The objects.

TYLA Objects April 8, 2019 47 / 141

Inheritance in Smalltalk 80

Magnitude Behavior

ClassDescription

Metaclass ClassFloat

Number

Object

Behavior classMagnitude class

Float class

Number class ClassDescription class

Object class

Metaclass class Class class

TYLA Objects April 8, 2019 48 / 141

The Smalltalk 80 System

More than a language, a system where everything is an object, and
the only control structure is message passing.

a virtual image;

a byte-code compiler;

a virtual machine;

more than 500 classes, 4000 methods, 15000 objects.

TYLA Objects April 8, 2019 49 / 141

The Smalltalk 80 System

More than a language, a system where everything is an object, and
the only control structure is message passing.

a virtual image;

a byte-code compiler;

a virtual machine;

more than 500 classes, 4000 methods, 15000 objects.

TYLA Objects April 8, 2019 49 / 141

The Smalltalk 80 System

More than a language, a system where everything is an object, and
the only control structure is message passing.

a virtual image;

a byte-code compiler;

a virtual machine;

more than 500 classes, 4000 methods, 15000 objects.

TYLA Objects April 8, 2019 49 / 141

The Smalltalk 80 System

More than a language, a system where everything is an object, and
the only control structure is message passing.

a virtual image;

a byte-code compiler;

a virtual machine;

more than 500 classes, 4000 methods, 15000 objects.

TYLA Objects April 8, 2019 49 / 141

Smalltalk 80 Standard Library

System
Class, Object, Number, Boolean, BlockContext etc.

Programming Environment
Model, View, Controler, etc.

Standard Library
Collection, Stream, etc.

Notable inventions
Bitmap, Mouse, Semaphore, Process, ProcessScheduler

TYLA Objects April 8, 2019 50 / 141

Smalltalk 80

TYLA Objects April 8, 2019 51 / 141

Smalltalk 80

TYLA Objects April 8, 2019 52 / 141

Booleans: Logical Operators

Boolean methods: and:, or:, not:.

In the True class

and: aBlock
"Evaluate aBlock"
" aBlock value

In the False class

and: aBlock
"Return receiver"
" self

TYLA Objects April 8, 2019 53 / 141

Booleans: Control Structures

More Boolean methods:

ifTrue:

ifFalse:

ifTrue:ifFalse:

... ifFalse:ifTrue:

For instance, compute a minimum:

| a b x |
...
a <= b ifTrue: [x <- a]

ifFalse: [x <- b].
...

TYLA Objects April 8, 2019 54 / 141

Integers in Smalltalk 80

Number

LargePositiveInteger (=, <)

SmallInteger (=, <) LargeNegativeInteger (=, <)

Float (=, <) Integer (=, <) Fraction (=, <)

Magnitude (>, >=, <=)

Object

Date (=, <) Character (=, <)

TYLA Objects April 8, 2019 55 / 141

Integers in Smalltalk 80

In Magnitude

>= aMagnitude
" (self < aMagnitude) not

In Date

< aDate
year < aDate year

ifTrue: [" day < aDate day]
ifFalse: [" year < aDate year]

TYLA Objects April 8, 2019 56 / 141

Collections in Smalltalk 80

SequenceableCollection

LinkedList

ArrayedCollection

Interval

OrderedCollection

SortedCollectionArray TextString

Symbol

Bag Set

Collection

Object

Dictionary

TYLA Objects April 8, 2019 57 / 141

Collections in Smalltalk 80

In LinkedList:

do: aBlock
| aLink |
aLink <- firstLink.
[aLink = nil] whileFalse:

[aBlock value: aLink.
aLink <- aLink nextLink]

TYLA Objects April 8, 2019 58 / 141

Using Smalltalk 80 Collections

sum <- 0.
#(2 3 5 7 11) do:

[:prime |
sum <- sum + (prime * prime)]

or:

sum <- 0.
#(2 3 5 7 11)

collect: [:prime | prime * prime];
do: [:number | sum <- sum + number]

TYLA Objects April 8, 2019 59 / 141

The Smalltalk 80 Environment

Everything is sorted, classified,
so that the programmers can browse the system.

Everything is object.

The system is reflexive.

The inspector to examine an object.

Coupled to the debugger and the interpretor,
a wonderful programming environment.

Big success of Smalltalk in prototyping.

TYLA Objects April 8, 2019 60 / 141

Sub-classing in Smalltalk 80: Complexes
Chose a superclass: Number.
Browse onto it (look in the Numeric-Numbers category). A
skeleton is proposed.

Number subclass: #Complex
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Numeric -Numbers ’

Complete.

Number subclass: #Complex
instanceVariableNames: ’re im’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Numeric -Numbers ’

TYLA Objects April 8, 2019 61 / 141

Sub-classing in Smalltalk 80: Complexes

Validate.

Go into the Complex class, class methods, and create:

re: realPart im: imPart
" (self new) setRe: realPart setIm: imPart

TYLA Objects April 8, 2019 62 / 141

Sub-classing in Smalltalk 80: Complexes
Instance methods:

setRe: realPart setIm: imPart
re <- realPart.
im <- imPart

im
"Return the imaginary part of the receiver."
" im

+ aComplex
" Complex re: (re + aComplex re)

im: (im + aComplex im)

But then:

(Complex re: 42 im: 51) + 666

yields message not understood: re.
TYLA Objects April 8, 2019 63 / 141

Sub-classing in Smalltalk 80: Complexes

First solution: implement asComplex in Number and Complex

"Class Number: addition."
+ aNumber

| c |
c <- aNumber asComplex.
" Complex re: (re + c re) im: (im + c im)

Second solution: implement re and im in Number.
But these don’t address:

666 + (Complex re: 42 im: 51)

This issue was known by Smalltalk designers who faced it for other
Number subclasses; they introduced the generality class method.

TYLA Objects April 8, 2019 64 / 141

Smalltalk 80 Criticism

Some loopholes in the semantics.

The metaclass concept was considered too di�cult.

No typing!

Dynamic dispatch exclusively, that’s slow.

The GC is nice, but slow too.

The virtual image prevents collaborative development.

No security (one can change anything).

No means to produce standalone applications.

No multiple inheritance.

TYLA Objects April 8, 2019 65 / 141

Demo with Squeak

https://squeak.org
TYLA Objects April 8, 2019 66 / 141

C++

1 Simula

2 Smalltalk

3 C++
The Man Behind C++
C++

A. Demaille, E. Renault, R. Levillain Object Oriented History 64 / 104

The Man Behind C++

1 Simula

2 Smalltalk

3 C++
The Man Behind C++
C++

A. Demaille, E. Renault, R. Levillain Object Oriented History 65 / 104

Bjarne Stroustrup

A. Demaille, E. Renault, R. Levillain Object Oriented History 66 / 104

Bjarne Stroustrup

A. Demaille, E. Renault, R. Levillain Object Oriented History 67 / 104

Bjarne Stroustrup

A. Demaille, E. Renault, R. Levillain Object Oriented History 68 / 104

Young Bjarne Stroustrup

A. Demaille, E. Renault, R. Levillain Object Oriented History 69 / 104

Bjarne Stroustrup 2008

A. Demaille, E. Renault, R. Levillain Object Oriented History 70 / 104

C++

1 Simula

2 Smalltalk

3 C++
The Man Behind C++
C++

A. Demaille, E. Renault, R. Levillain Object Oriented History 71 / 104

C++

Bjarne Stroustrup, BellLabs, 1982.
cfront, a C preprocessor.
G++, the first real C++ compiler.
Standardized in 1998.

A. Demaille, E. Renault, R. Levillain Object Oriented History 72 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

C++: A better & safer C

introduction of const;
introduction of reference;
introduction of prototypes;
introduction of Booleans;
declaring variable anywhere;
introduction of void;
introduction of inline;
introduction of namespace;
introduction of overloading etc.

Most features made it into more modern Cs.

A. Demaille, E. Renault, R. Levillain Object Oriented History 73 / 104

Class declaration

#ifndef SHAPE_HH_
define SHAPE_HH_ 1

class Shape
{
public:

Shape(int x, int y);

void x_set(int x); int x_get() const;
void y_set(int y); int y_get() const;

void move_to(int x, int y);
void rmove_to(int deltax, int deltay);

virtual void draw() const;
private:

int x_, y_;
};

#endif SHAPE_HH_

A. Demaille, E. Renault, R. Levillain Object Oriented History 74 / 104

Class implementation

#include "shape.hh"

// Constructor.
Shape::Shape(int x, int y) : x_(x), y_(y) {}

// Accessors for x & y.
int Shape::x_get() const { return x_; }
int Shape::y_get() const { return y_; }
void Shape::x_set(int x) { x_ = x; }
void Shape::y_set(int y) { y_ = y; }

// Move the shape.
void Shape::move_to(int x, int y) { x_set(x); y_set(y); }
void Shape::rmove_to(int x, int y) {

move_to(x_get() + x, y_get() + y);
}

// Abstract draw method.
void Shape::draw() const { abort(); }

A. Demaille, E. Renault, R. Levillain Object Oriented History 75 / 104

Class definition

#pragma once

class Shape
{
public:

Shape(int x, int y) : x_(x), y_(y) {}

int x_get() const { return x_; }
int y_get() const { return y_; }

void x_set(int x) { x_ = x; }
void y_set(int y) { y_ = y; }

void move_to(int x, int y) { x_ = x; y_ = y; }
void rmove_to(int x, int y) { x_ += x; y_ += y; }
virtual void draw() const = 0;

private:
int x_, y_;

};

A. Demaille, E. Renault, R. Levillain Object Oriented History 76 / 104

Sub-classing: rectangle.hh

#pragma once

#include <iostream>
#include "shape.hh"
class Rectangle: public Shape {
public:

Rectangle(int x, int y, int w, int h) :
Shape(x, y), width_(w), height_(h) {}

int width_get () const { return width_; }
int height_get() const { return height_; }
int width_set (int w) { width_ = w; }
int height_set(int h) { height_ = h; }
void draw() const {

std::cout << "Drawing a Rectangle at: (" << x_get()
<< "," << y_get() << "), " << "width " << width_
<< ", height " << height_ << std::endl;

}
private:

int width_, height_;
};

A. Demaille, E. Renault, R. Levillain Object Oriented History 77 / 104

Sub-classing: circle.hh

#pragma once

#include <iostream>
#include "shape.hh"
class Circle: public Shape {
public:

Circle(int x, int y, int r) :
Shape(x, y), radius_(r) {}

int radius_get() const { return radius_; }
void radius_set(int r) { radius_ = r; }

void draw() const {
cout << "Drawing a Circle at: ("

<< x_get() << "," << y_get() << "), "
<< "radius " << radius_ << endl;

}
private:

int radius_;
};

A. Demaille, E. Renault, R. Levillain Object Oriented History 78 / 104

Polymorphism

#include "shape.hh"
#include "circle.hh"
#include "rectangle.hh"

int
main()
{

Shape *shapes[2];
shapes[0] = new Rectangle(10, 20, 5, 6);
shapes[1] = new Circle(15, 25, 8);

for (int i = 0; i < 2; i++)
{

shapes[i]->draw();
shapes[i]->rmove_to(100, 100);
shapes[i]->draw();

}
}

A. Demaille, E. Renault, R. Levillain Object Oriented History 79 / 104

Polymorphism

Result:
Drawing a Rectangle at: (10,20), width 5, height 6

Drawing a Rectangle at: (110,120), width 5, height 6

Drawing a Circle at: (15,25), radius 8

Drawing a Circle at: (115,125), radius 8

A. Demaille, E. Renault, R. Levillain Object Oriented History 80 / 104

Parameterized Polymorphism

template <typename T>

T

id(T t)

{

return t;

}

int

main()

{

id(3);

id(3.0);

id("three");

int three[3] = { 3, 3, 3 };

id(three);

id(main);

}

A. Demaille, E. Renault, R. Levillain Object Oriented History 81 / 104

Generic Classes
#include <iostream>
template <typename T> struct Pair {

Pair(T fst, T snd): fst_(fst), snd_(snd) {}
T fst() const { return fst_; }
T snd() const { return snd_; }

private:
T fst_, snd_;

};

int main() {
Pair<int> foo(2, 3);
std::cout << foo.fst() << ", " << foo.snd() << std::endl;

Pair<float> bar(2.2, 3.3);
std::cout << bar.fst() << ", " << bar.snd() << std::endl;

Pair <Pair<int> > baz(Pair<int>(1, 2), Pair<int>(3, 4));
std::cout << baz.fst(). fst() << baz.fst().snd()

<< baz.snd(). fst() << baz.snd().snd()
<< std::endl;

}
A. Demaille, E. Renault, R. Levillain Object Oriented History 82 / 104

Standard Template Library

#include <iostream>

#include <iterator>

#include <list>

int

main()

{

std::list<int> list;

list.push_back(1);

list.push_back(2);

list.push_back(3);

std::copy(list.begin(), list.end(),

std::ostream_iterator <int>(std::cout, "\n"));

}

A. Demaille, E. Renault, R. Levillain Object Oriented History 83 / 104

Quickly Read Only
template <class _Tp, class _Alloc, size_t __bufsize>
template <class _ForwardIterator>
void
deque<_Tp,_Alloc,__bufsize>::

insert(iterator __pos, _ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag) {

size_type __n = 0;
distance(__first, __last, __n);
if (__pos._M_cur == _M_start._M_cur) {

iterator __new_start = _M_reserve_elements_at_front(__n);
__STL_TRY {

uninitialized_copy(__first, __last, __new_start);
_M_start = __new_start;

}
__STL_UNWIND(_M_destroy_nodes(__new_start._M_node,

_M_start._M_node));
}
else if (__pos._M_cur == _M_finish._M_cur) {

iterator __new_finish = _M_reserve_elements_at_back(__n);
__STL_TRY {

uninitialized_copy(__first, __last, _M_finish);
_M_finish = __new_finish;

}
__STL_UNWIND(_M_destroy_nodes(_M_finish._M_node + 1,

__new_finish._M_node + 1));
}
else

_M_insert_aux(__pos, __first, __last, __n);
}

Poor Error Messages

#include <iostream>

#include <list>

int

main()

{

std::list<int> list;

list.push_back(1);

list.push_back(2);

list.push_back(3);

const std::list<int> list2 = list;

for (std::list<int>::iterator i = list2.begin();

i != list2.end(); ++i)

std::cout << *i << std::endl;

}

A. Demaille, E. Renault, R. Levillain Object Oriented History 85 / 104

Poor Error Messages

G++ 2.95:
bar.cc: In function ‘int main()’:
bar.cc:13: conversion from

‘_List_iterator<int,const int &, const int *>’
to non-scalar type
‘_List_iterator<int,int &, int *>’ requested

bar.cc:14: no match for
‘_List_iterator<int,int &,int *> & !=

_List_iterator<int,const int &,const int *>’
/usr/lib/gcc-lib/i386-linux/2.95.4/../../../../include/g++-3/stl_list.h:70:

candidates are:
bool _List_iterator<int,int &,int *>::operator !=

(const _List_iterator<int,int &,int *> &) const

A. Demaille, E. Renault, R. Levillain Object Oriented History 86 / 104

(A Bit Less) Poor Error Messages

Some progress: G++ 3.3.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13: error: conversion from

‘std::_List_iterator<int, const int&, const int*>’

to non-scalar type

‘std::_List_iterator<int, int&, int*>’ requested

G++ 3.4, 4.0 and 4.1, 4.2, 4.3 and 4.4.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13: error: conversion from

‘std::_List_const_iterator<int>’ to non-scalar type

‘std::_List_iterator<int>’ requested

G++ 4.5.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13:50: error: conversion from

‘std::list<int>::const_iterator’ to non-scalar type

‘std::list<int>::iterator’ requested

A. Demaille, E. Renault, R. Levillain Object Oriented History 87 / 104

(A Bit Less) Poor Error Messages

Some progress: G++ 3.3.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13: error: conversion from

‘std::_List_iterator<int, const int&, const int*>’

to non-scalar type

‘std::_List_iterator<int, int&, int*>’ requested

G++ 3.4, 4.0 and 4.1, 4.2, 4.3 and 4.4.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13: error: conversion from

‘std::_List_const_iterator<int>’ to non-scalar type

‘std::_List_iterator<int>’ requested

G++ 4.5.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13:50: error: conversion from

‘std::list<int>::const_iterator’ to non-scalar type

‘std::list<int>::iterator’ requested

A. Demaille, E. Renault, R. Levillain Object Oriented History 87 / 104

(A Bit Less) Poor Error Messages

Some progress: G++ 3.3.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13: error: conversion from

‘std::_List_iterator<int, const int&, const int*>’

to non-scalar type

‘std::_List_iterator<int, int&, int*>’ requested

G++ 3.4, 4.0 and 4.1, 4.2, 4.3 and 4.4.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13: error: conversion from

‘std::_List_const_iterator<int>’ to non-scalar type

‘std::_List_iterator<int>’ requested

G++ 4.5.
list-invalid.cc: In function ‘int main()’:

list-invalid.cc:13:50: error: conversion from

‘std::list<int>::const_iterator’ to non-scalar type

‘std::list<int>::iterator’ requested

A. Demaille, E. Renault, R. Levillain Object Oriented History 87 / 104

(A Bit Less) Poor Error Messages

G++ 4.6 and 4.7.
list-invalid.cc: In function ‘int main()’:
list-invalid.cc:13:50: erreur: conversion from

‘std::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
‘std::list<int>::iterator {aka std::_List_iterator<int>}’ requested

G++ 4.8.
list-invalid.cc: In function ’int main()’:
list-invalid.cc:13:50: error: conversion from

’std::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
’std::list<int>::iterator {aka std::_List_iterator<int>}’ requested
for (std::list<int>::iterator i = list2.begin ();

^

A. Demaille, E. Renault, R. Levillain Object Oriented History 88 / 104

(A Bit Less) Poor Error Messages

G++ 4.6 and 4.7.
list-invalid.cc: In function ‘int main()’:
list-invalid.cc:13:50: erreur: conversion from

‘std::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
‘std::list<int>::iterator {aka std::_List_iterator<int>}’ requested

G++ 4.8.
list-invalid.cc: In function ’int main()’:
list-invalid.cc:13:50: error: conversion from

’std::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
’std::list<int>::iterator {aka std::_List_iterator<int>}’ requested
for (std::list<int>::iterator i = list2.begin ();

^

A. Demaille, E. Renault, R. Levillain Object Oriented History 88 / 104

(A Bit Less) Poor Error Messages

ICC 8.1 and 9.1.
list-invalid.cc(8):

remark #383: value copied to temporary, reference

to temporary used

list.push_back (1);

^

[...]

list-invalid.cc(13): error: no suitable user-defined conversion

from

"std::list<int, std::allocator<int>>::const_iterator" to

"std::list<int, std::allocator<int>>::iterator" exists

for (std::list<int>::iterator i = list2.begin ();

^

ICC 10.0 and 11.0.
list-invalid.cc(13): error: no suitable user-defined conversion

from "std::_List_const_iterator<int>"

to "std::_List_iterator<int>" exists

for (std::list<int>::iterator i = list2.begin ();

^

A. Demaille, E. Renault, R. Levillain Object Oriented History 89 / 104

(A Bit Less) Poor Error Messages

ICC 8.1 and 9.1.
list-invalid.cc(8):

remark #383: value copied to temporary, reference

to temporary used

list.push_back (1);

^

[...]

list-invalid.cc(13): error: no suitable user-defined conversion

from

"std::list<int, std::allocator<int>>::const_iterator" to

"std::list<int, std::allocator<int>>::iterator" exists

for (std::list<int>::iterator i = list2.begin ();

^

ICC 10.0 and 11.0.
list-invalid.cc(13): error: no suitable user-defined conversion

from "std::_List_const_iterator<int>"

to "std::_List_iterator<int>" exists

for (std::list<int>::iterator i = list2.begin ();

^

A. Demaille, E. Renault, R. Levillain Object Oriented History 89 / 104

(A Bit Less) Poor Error Messages

Clang 1.1 (LLVM 2.7)
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

In file included from list-invalid.cc:2:
In file included from /usr/include/c++/4.2.1/list:69:
/usr/include/c++/4.2.1/bits/stl_list.h:113:12: note: candidate

constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’struct std::_List_iterator<int> const’ for 1st argument

struct _List_iterator
^

1 error generated.

A. Demaille, E. Renault, R. Levillain Object Oriented History 90 / 104

(A Bit Less) Poor Error Messages

Clang 2.8 (LLVM 2.8).
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

In file included from list-invalid.cc:2:
In file included from /usr/include/c++/4.2.1/list:69:
/usr/include/c++/4.2.1/bits/stl_list.h:112:12: note: candidate

constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::_List_iterator<int> const &’ for 1st argument

struct _List_iterator
^

1 error generated.

A. Demaille, E. Renault, R. Levillain Object Oriented History 91 / 104

(A Bit Less) Poor Error Messages

Clang 2.9 (LLVM 2.9).
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

In file included from list-invalid.cc:2:
In file included from /usr/include/c++/4.2.1/list:69:
/usr/include/c++/4.2.1/bits/stl_list.h:112:12: note: candidate

constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’const std::_List_iterator<int> &’ for 1st argument

struct _List_iterator
^

1 error generated.

A. Demaille, E. Renault, R. Levillain Object Oriented History 92 / 104

(A Bit Less) Poor Error Messages

Clang 3.0 (LLVM 3.0) and Clang 3.1 (LLVM 3.1).
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

/usr/include/c++/4.2.1/bits/stl_list.h:112:12: note: candidate
constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’const std::_List_iterator<int> &’ for 1st argument;

struct _List_iterator
^

1 error generated.

A. Demaille, E. Renault, R. Levillain Object Oriented History 93 / 104

Bad Engineering Properties of Object Oriented Languages

4 Bad Engineering Properties of Object Oriented Languages

A. Demaille, E. Renault, R. Levillain Object Oriented History 95 / 104

Luca Cardelli

A. Demaille, E. Renault, R. Levillain Object Oriented History 96 / 104

Engineering Properties [Cardelli, 1996]

Economy of execution.
How fast does a program run?
Economy of compilation.
How long does it take to go from sources to executables?
Economy of small-scale development.
How hard must an individual programmer work?
Economy of large-scale development.
How hard must a team of programmers work?
Economy of language features.
How hard is it to learn or use a programming language?

A. Demaille, E. Renault, R. Levillain Object Oriented History 97 / 104

Economy of execution

Type information was first introduced in programming to improve code
generation and run-time efficiency for numerical computations. In ML,
accurate type information eliminates the need for nil-checking on pointer
dereferencing.
Object-oriented style intrinsically less efficient that procedural style
(virtual). The traditional solution to this problem (analyzing and
compiling whole programs) violates modularity and is not applicable to
libraries.
Much can be done to improve the efficiency of method invocation by clever
program analysis, as well as by language features (e.g. final). Design
type systems that can statically check many of the conditions that now
require dynamic subclass checks.

A. Demaille, E. Renault, R. Levillain Object Oriented History 98 / 104

Economy of compilation

Type information can be organized into interfaces for program modules
(Modula-2, Ada...). Modules can then be compiled independently.
Compilation of large systems is made more efficient. The messy aspects of
system integration are thus eliminated.
Often, no distinction between the code and the interface of a class. Some
object-oriented languages are not sufficiently modular and require
recompilation of superclasses when compiling subclasses. Time spent in
compilation may grow disproportionally with the size of the system.
We need to adopt languages and type systems that allow the separate
compilation of (sub)classes, without resorting to recompilation of
superclasses and without relying on “private” information in interfaces.

A. Demaille, E. Renault, R. Levillain Object Oriented History 99 / 104

Economy of small-scale development

Well designed type systems allow typechecking to capture a large fraction
of routine programming errors. Remaining errors are easier to debug: large
classes of other errors have been ruled out. Typechecker as a development
tool (changing the name of a type when its invariants change even though
the type structure remains the same).
Big win of OO: class libraries and frameworks. But when ambition grows,
programmers need to understand the details of those class libraries: more
difficult than understanding module libraries. The type systems of most
OOL are not expressive enough; programmers must often resort to dynamic
checking or to unsafe features, damaging the robustness of their programs.
Improvements in type systems for OOL will improve error detection and the
expressiveness of interfaces.

A. Demaille, E. Renault, R. Levillain Object Oriented History 100 / 104

Economy of large-scale development

Data abstraction and modularization have methodological advantages for
development. Negotiate the interfaces, then proceed separately.
Polymorphism is important for reusing code modularly.
Teams developing/specializing class libraries. Reuse is a big win of OOL,
but poor modularity wrt class extension and modification (method
“removal”, etc.). Confusion bw classes and object types (limits
abstractions). Subtype polymorphism is not good enough for containers.
Formulating and enforcing inheritance interfaces: the contract bw a class
and its subclasses. Requires language support development. Parametric
polymorphism is beginning to appear but its interactions with OO features
need to be better understood. Interfaces/subtyping and classes/subclassing
must be separated.

A. Demaille, E. Renault, R. Levillain Object Oriented History 101 / 104

Economy of language features

Well-designed orthogonal constructs can be naturally composed (array of
arrays; n-ary functions vs 1-ary and tuples). Orthogonality reduces the
complexity of languages. Learning curve thus reduced, re-learning
minimized.
Smalltalk, good. C++ daunting in the complexity of its many features.
Somewhere something went wrong; what started as economical and
uniform (“everything is an object”) ended up as a baroque collection of
class varieties. Java represents a healthy reaction, but is more complex
than many people realize.
Prototype-based languages tried to reduce the complexity by providing
simpler, more composable features, but much remains to be done for
class-based languages. How can we design an OOL that allows powerful
engineering but also simple and reliable engineering?

A. Demaille, E. Renault, R. Levillain Object Oriented History 102 / 104

Table of Contents

1 Simula

2 Smalltalk

3 The mysterious language

TYLA Objects April 8, 2019 67 / 141

Reading...

TYLA Objects April 8, 2019 68 / 141

What is this Book ?

TYLA Objects April 8, 2019 69 / 141

Table of Contents

1 Simula

2 Smalltalk

3 The mysterious language
People behind Ei↵el
Overview of the System
Overview of the Language

TYLA Objects April 8, 2019 70 / 141

Bertrand Meyer (1950), MIT

TYLA Objects April 8, 2019 71 / 141

Table of Contents

1 Simula

2 Smalltalk

3 The mysterious language
People behind Ei↵el
Overview of the System
Overview of the Language

TYLA Objects April 8, 2019 72 / 141

Introducing Ei↵el

High-level language designed for Software Engineering, portable,
with an original and clear syntax

Modern conception of multiple class inheritance

High level tools and programmatic concepts (Virtual classes,
Generics, Exceptions, etc.)

Lot of standard libraries

TYLA Objects April 8, 2019 73 / 141

Libraries

Ei↵elCOM (COM,OLE,ActiveX),
Ei↵elCORBA,
Ei↵elMath,
Ei↵elNet (client-serveur),
Ei↵elLex & Ei↵elParse,
Ei↵elStore (BD),
Ei↵elWEB,
Ei↵el DLE (dynamic link),
Ei↵elVision (GUI),
Graphical Ei↵el for Windows, Ei↵el WEL (Windows),
Ei↵elThreads,
etc.

TYLA Objects April 8, 2019 74 / 141

An Ei↵el Application

An Ei↵el Application is called a system.

Classes :
I One per file (.e)
I Groupped in clusters
I One one them is the main class

Ei↵el Librairies (only one in practice)

External Librairies

A file describing the application
I LACE file, Langage pour l’assemblage des classes en Ei↵el

TYLA Objects April 8, 2019 75 / 141

Clusters

LOGICAL point-of-view
Set of classes building an antonomous part of the application

PHYSICAL point-of-view
All these classes lay in the same repository

LACE point-of-view
A cluster is a name associated to a repository

TYLA Objects April 8, 2019 76 / 141

LACE File Example

system
geo

root
TEST(TEST): "main"

default
precompiled("$EIFFEL3/precomp/spec/$PLATFORM/base")

cluster
TEST: "$EIFFELDIR/TEST" ;
FIGS: "$EIFFELDIR/FIGURES" ;

external
object: "$(EIFFEL3)/ library/lex/spec/$(PLATFORM)/lib/lex.a"

end

TYLA Objects April 8, 2019 77 / 141

Original Concepts

Adaptation clauses for inheritance
resolve multiple inheritance problems

Contract Programming
Promote reusability and modularity

Graphical User Interface
A full dedicated GUI: drag-and-drop, etc.

TYLA Objects April 8, 2019 78 / 141

A smart compiler

Compiler with three modes really usefull in developpement phases

FINALIZING Optimisation and production of an executable file where
all optimizations hgave been applied. May be very slow!

FREEZING compile and produce an executable file

MELTING compilation by patches. Very fast, a modification only
recompile what is necessary (not good performance,
useful for developpement)

TYLA Objects April 8, 2019 79 / 141

A smart compiler

Compiler with three modes really usefull in developpement phases

FINALIZING Optimisation and production of an executable file where
all optimizations hgave been applied. May be very slow!

FREEZING compile and produce an executable file

MELTING compilation by patches. Very fast, a modification only
recompile what is necessary (not good performance,
useful for developpement)

TYLA Objects April 8, 2019 79 / 141

A smart compiler

Compiler with three modes really usefull in developpement phases

FINALIZING Optimisation and production of an executable file where
all optimizations hgave been applied. May be very slow!

FREEZING compile and produce an executable file

MELTING compilation by patches. Very fast, a modification only
recompile what is necessary (not good performance,
useful for developpement)

TYLA Objects April 8, 2019 79 / 141

A smart compiler

Compiler with three modes really usefull in developpement phases

FINALIZING Optimisation and production of an executable file where
all optimizations hgave been applied. May be very slow!

FREEZING compile and produce an executable file

MELTING compilation by patches. Very fast, a modification only
recompile what is necessary (not good performance,
useful for developpement)

TYLA Objects April 8, 2019 79 / 141

A full System

Ei↵elBench the visual workbench for object-oriented development

Ei↵elBuild the editor to build GUI

Ei↵elCase the tools dedicated to build and design application

TYLA Objects April 8, 2019 80 / 141

A full System

Ei↵elBench the visual workbench for object-oriented development

Ei↵elBuild the editor to build GUI

Ei↵elCase the tools dedicated to build and design application

TYLA Objects April 8, 2019 80 / 141

A full System

Ei↵elBench the visual workbench for object-oriented development

Ei↵elBuild the editor to build GUI

Ei↵elCase the tools dedicated to build and design application

TYLA Objects April 8, 2019 80 / 141

Ebench

TYLA Objects April 8, 2019 81 / 141

Edit a Class

TYLA Objects April 8, 2019 82 / 141

Table of Contents

1 Simula

2 Smalltalk

3 The mysterious language
People behind Ei↵el
Overview of the System
Overview of the Language

TYLA Objects April 8, 2019 83 / 141

Example of a Class

class POINT
-- un point dans un dessin géom é trique

feature
-- deux attributs : les coordonn ées
xc ,yc : INTEGER ;

-- une mé thode : changer les coordonn ées
set_x_y(x,y : INTEGER) is

do
xc := x ;
yc := y ;

end ;
end -- class POINT

TYLA Objects April 8, 2019 84 / 141

Methods Calls

method
name

variable
receiving

the eventual
result

x := o.m(a,b,c,...)

object
receiving the

message

method
parameters

message

The object execute the
method m which is executed
in its own context.

For distributed objects, a
message is sent, otherwise it
is a simple procedure call.

TYLA Objects April 8, 2019 85 / 141

Creating an Object

p : POINT ;

do
 ...
 !! p ;
 ...
end ;

p

variable of type reference

created object

−− instruction

Except for explicit declaration, all the object’s variables are
references: they handle pointers.

TYLA Objects April 8, 2019 86 / 141

Creation with Initialization 1/2

class POINT
create

make -- init method
feature

-- init method
make(x,y : INTEGER) is

do
set_x_y(x,y) ;

end ;

-- same as previously
end -- class POINT

Attributes are initialized with
a default value (e.g., 0 for an
Integer, Void for a variable
with type reference).

If we want to initialize an

object during creation, we

must build a initialization

method

TYLA Objects April 8, 2019 87 / 141

Creation with Initialization 2/2

The object can then be created using its initialization method

p : POINT ;
create p.make (23 ,64) ;; -- create and initialize a Point

Multiple initialization methods can be defined for a same class.
The correct method is chosen during the creation.

When (at least) one initialization method is declared for an class,
this class cannot be created without calling one of these routines.
) Security

TYLA Objects April 8, 2019 88 / 141

Access to Class Member Variables

READING By default, all members are readable: everyone can
know the value of it (but restriction can be applied).

WRITTING Members are NEVER writtable except for the current

object. The object mus provide a setter!
set x y(x,y : INTEGER) de la classe POINT.
) Security

Method without arguments doesn’t have an empty pair of
parenthesis: this helps to keep API stable

TYLA Objects April 8, 2019 89 / 141

Access to Class Member Variables

READING By default, all members are readable: everyone can
know the value of it (but restriction can be applied).

WRITTING Members are NEVER writtable except for the current

object. The object mus provide a setter!
set x y(x,y : INTEGER) de la classe POINT.
) Security

Method without arguments doesn’t have an empty pair of
parenthesis: this helps to keep API stable

TYLA Objects April 8, 2019 89 / 141

Ei↵el Overview
An object-oriented program structure in which a class serves as
the basic unit of decomposition
Static Typing
Protection against calls on null references, through the
attached-types mechanism
Objects that wrap computations (closely connected with closures
and lambda calculus)
Garbage Collection
Simple Concurrent Object-Oriented Programming

Constrained and unconstrained generic programming in a latter

lecture

Design by contract (latter in this lecture)
Fine grained (multiple) inheritance handling (latter in this

lecture)

TYLA Objects April 8, 2019 90 / 141

Part II

Object-Oriented Paradigms

TYLA Objects April 8, 2019 91 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 92 / 141

Problem Statement

Simple Inheritance: a
class may herit at most from
only one class

Multiple Inheritance:
more powerful than the
simple inheritance but

introduces problems.
Ei↵el proposes the
adaptation clauses to solve
these problems.

TYLA Objects April 8, 2019 93 / 141

Problem Statement

Simple Inheritance: a
class may herit at most from
only one class

Multiple Inheritance:
more powerful than the
simple inheritance but

introduces problems.
Ei↵el proposes the
adaptation clauses to solve
these problems.

Class A

primitive
p

Class B

primitive
p

Class C

inherit
 A
 B

X

What does

X.p

 mean ?

TYLA Objects April 8, 2019 93 / 141

Multiple Inheritance is Sometimes Necessary

SHAPE

POLYGON

SQUARE COLORED_SHAPE

COLORED_SQUARE

TYLA Objects April 8, 2019 94 / 141

Inheritance for factorization
Simple inheritance helps to factorization:

A B

A B

AB

And multiple inheritance is sometimes mandatory

A B C A B C

AB BC

Smalltalk, Java, ... only propose a solution for modelisation while
Ei↵el also solves the factorization problems.

TYLA Objects April 8, 2019 95 / 141

Quick Overview of the Other Languages

Multiple inheritance is forbidden because it raises numerous
problems and it is not necessary.
) Java, Smalltalk, Ada

Chosse a lookup strategy and the programmer must conform it:
) C++

Propose tools (in the language) for solving problems related to
multiple inheritance
) Ei↵el’s inheritance adaptation clauses.

TYLA Objects April 8, 2019 96 / 141

Jointure of primitives

Two corner cases :

class A

class B class C

class D

p

class B class C

class D

deferred pdeferred p

deferred is an Ei↵el keyword meaning virtual in C++
TYLA Objects April 8, 2019 97 / 141

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited primitives

A-definition inherited primitives (make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

TYLA Objects April 8, 2019 98 / 141

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited primitives

A-definition inherited primitives (make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

TYLA Objects April 8, 2019 98 / 141

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited primitives

A-definition inherited primitives (make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

TYLA Objects April 8, 2019 98 / 141

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited primitives

A-definition inherited primitives (make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

TYLA Objects April 8, 2019 98 / 141

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited primitives

A-definition inherited primitives (make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

TYLA Objects April 8, 2019 98 / 141

Adaptation Clauses

Features:

Rename inherited primitives

Modify Visibility of inherited primitives

A-definition inherited primitives (make a primitive virtual)

Redefine inherited primitives

Selection clauses

With these operations, we can resolve all
problems related to multiple inheritance.

TYLA Objects April 8, 2019 98 / 141

Table of Contents

4 Handling Multiple inheritance
Renaming Clauses
Visibility Filter
Redefinition Clauses
Selection Clauses
A-definition

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 99 / 141

Renaming Clauses
class SQUARE

inherit
SHAPE

rename
make as make_shape

end ;

feature
width : INTEGER ;
make(x,y : INTEGER ;

w : INTEGER) is
do

make_shape(x,y) ;
width := w ;

end ;

end -- class SQUARE

The renamed primitive is
still accessible but with a
di↵erent name.

The original name can
then be used for another
primitive even with a
di↵erent signature.

TYLA Objects April 8, 2019 100 / 141

(French) Example

TELEPHONE_MURAL

rename

decrocher

as

decrocher_du_mur

TELEPHONE OBJET_MURAL

méthode

décrocher()

méthode

décrocher()

TYLA Objects April 8, 2019 101 / 141

Table of Contents

4 Handling Multiple inheritance
Renaming Clauses
Visibility Filter
Redefinition Clauses
Selection Clauses
A-definition

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 102 / 141

Visibility Filter
class SQUARE

inherit
SHAPE

rename make as make_shape
export {NONE} make_shape
end ;

feature

width : INTEGER ;

make(x,y : INTEGER ;
w : INTEGER) is

do
make_shape(x,y) ;
width := w ;

end ;
end -- class SQUARE

make shape was accessible
without reasons in class
SQUARE

May help to mask
inherited primitive

TYLA Objects April 8, 2019 103 / 141

Access Restrictions

feature ou feature{ANY}
primitives with default access value
(All objects derive from ANY)

feature{A,B,C,...}
primitives with access restricted only to some classes A, B, C

feature{} ou feature{NONE}
unreachable primitives
(NONE : no instance from this classe)

TYLA Objects April 8, 2019 104 / 141

Table of Contents

4 Handling Multiple inheritance
Renaming Clauses
Visibility Filter
Redefinition Clauses
Selection Clauses
A-definition

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 105 / 141

Redefinition Clauses

class SQUARE

inherit
SHAPE

rename make as make_shape
export {NONE} make_shape
redefine draw
end ;

feature

draw(g : GRAPHICS) is
do

...
end ;

...

Constraints on redefintions

Each redefinition must be
declared

Redefined methods are
targetted by the dynamic
lookup

TYLA Objects April 8, 2019 106 / 141

Redfinir et conserver

On redfinit pour profiter de la recherche dynamique.

Here, we loose dynamic lookup

class B

inherit
A
rename p as pa end;

feature

p ... is ...

Here, dynamic lookup will work:

class B

inherit
A
rename p as pa end;

A
redefine p end;

feature

p ... is ...

TYLA Objects April 8, 2019 107 / 141

Redfinir et conserver

On redfinit pour profiter de la recherche dynamique.

Here, we loose dynamic lookup

class B

inherit
A
rename p as pa end;

feature

p ... is ...

Here, dynamic lookup will work:

class B

inherit
A
rename p as pa end;

A
redefine p end;

feature

p ... is ...

TYLA Objects April 8, 2019 107 / 141

Table of Contents

4 Handling Multiple inheritance
Renaming Clauses
Visibility Filter
Redefinition Clauses
Selection Clauses
A-definition

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 108 / 141

Selection Clauses

How to resolve this problem:

primitive p

primitive q

class A

primitive p

class D

class C

primitive p

class B

redefine predefine p

rename p as pcrename p as pb

Given x : A, what does x.p
means? If x references an instance
of class A, it is the primitive p
from A. Same thing happens for
an object of B ou C. What about
instances of class D ?

Example:

q() is do p() end ;

TYLA Objects April 8, 2019 109 / 141

Table of Contents

4 Handling Multiple inheritance
Renaming Clauses
Visibility Filter
Redefinition Clauses
Selection Clauses
A-definition

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 110 / 141

A-definition

The A-definition allows to undefine methods

Useful to ”delete” methods that don’t make sense anymore.

class TELEPHONE_MURAL
inherit

TELEPHONE ;
OBJET_MURAL

undefine decrocher
end ;

...

TYLA Objects April 8, 2019 111 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 112 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”
Definitions & Goals
Pre/Post-conditions
Redefinitions
Class Invariants
Assertions & Loop (in)variants

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 113 / 141

What is that?

”It is absurd to make elaborate security checks on debugging runs,

when no trust is put in the results, and then remove them in

production runs, when an erroneous result could be expensive or

disastrous. What would we think of a sailing enthusiast who wears

his life-jacket when training on dry land but takes it o↵ as soon as he

goes to sea?”

–
Charles Antony Richard Hoare

TYLA Objects April 8, 2019 114 / 141

Goals

In everyday life a service or a product typically comes with a contract
or warranty: an agreement in which one party promises to

supply the service or product for the benefit of some other

party.

An e↵ective contract for a service specifies requirements:

Conditions that the consumer must meet in order for the service
to be performed
) Preconditions

Condition that the provider must meet in order for the service to
be acceptable
) Postconditions

TYLA Objects April 8, 2019 115 / 141

Some History

Has roots in work on formal verification, formal specification and
Hoare logic

First introducted by Ei↵el

Supported natively by Ada (2012), D, C#

Librairies to emulate it in Java (cofoja), Javascript (contract.js),
Python (pycontracts), C++ (Boost) . . .

TYLA Objects April 8, 2019 116 / 141

Contracts

A lot of ontracts:

Pre-conditions and postconditions of a method

Class invariants

Assertions

Loop invariants

Contracts are part of the language:

a dedicated syntaxe

compiled (or not) according to the given options

used by the compiler

used by the environnemnt

used by the documentation

TYLA Objects April 8, 2019 117 / 141

Contracts

A lot of ontracts:

Pre-conditions and postconditions of a method

Class invariants

Assertions

Loop invariants

Contracts are part of the language:

a dedicated syntaxe

compiled (or not) according to the given options

used by the compiler

used by the environnemnt

used by the documentation

TYLA Objects April 8, 2019 117 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”
Definitions & Goals
Pre/Post-conditions
Redefinitions
Class Invariants
Assertions & Loop (in)variants

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 118 / 141

Pre-conditions

Pre-conditions must be fulfill by the client, i.e. based on arguments

class SHAPE

feature
xc, yc : INTEGER ; -- coordinates

set_x_y(x,y : INTEGER) is
require

x >= 0 and y >= 0
do

xc = x ;
yc = y ;

end ;
...

Pre-conditions in Ei↵el

TYLA Objects April 8, 2019 119 / 141

Post-conditions
Post-conditions must be fulfill by the provider, i.e. if the client fulfill

preconditions, the provider will fulfill postcondiitons.

class SHAPE

feature
...
set_x_y(x,y : INTEGER) is

require
x >= 0 and y >= 0

do
xc := x ;
yc := y ;

ensure
xc = x and yc = y

end ;

Post-conditions in Ei↵el

TYLA Objects April 8, 2019 120 / 141

Referencing previous version of an expression

old x reference the value of x before the execution of the method

class RECTANGLE

feature
width , height : INTEGER ;

set_width(w : INTEGER) is
require

w > 0
do

width := w
ensure

width = w and height = old height
end ;

...

Referencing previous value in Post-conditions (Ei↵el)

TYLA Objects April 8, 2019 121 / 141

Stripping Objects
In a postcondition, strip(x,y,..) references an object where all
attributes x and y , ... have been removed

class RECTANGLE

feature
width , height : INTEGER ;

set_width(w : INTEGER) is
-- change the width
require

w > 0
do

width := w
ensure

width = w and strip (width) = old strip (width)
end ;

Stripping Object in Postconditions (Ei↵el)
TYLA Objects April 8, 2019 122 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”
Definitions & Goals
Pre/Post-conditions
Redefinitions
Class Invariants
Assertions & Loop (in)variants

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 123 / 141

Redefinition (1/2)

routine p is require ... ensure ... end ;

routine q is do p() ; end ;

routine p is do ... end ;

class A

class B

redefine p

The redefined method p in B can
be used instead of the original
method p de A.
) Assertions are inherited

TYLA Objects April 8, 2019 124 / 141

Redefinition (2/2)

The redefined method must
satisfy old assertions but
can be more precise:

Release some
preconditions

Add (Restrict)
postconditions

class B

inherit
A redefine p end ;

feature
p is

require else
... -- other restrictions for calls

do
... -- new defintion

ensure then
... -- additionnal postconditions

end ;
end -- class

TYLA Objects April 8, 2019 125 / 141

Redefinition (2/2)

The redefined method must
satisfy old assertions but
can be more precise:

Release some
preconditions

Add (Restrict)
postconditions

class B

inherit
A redefine p end ;

feature
p is

require else
... -- other restrictions for calls

do
... -- new defintion

ensure then
... -- additionnal postconditions

end ;
end -- class

TYLA Objects April 8, 2019 125 / 141

Redefinition (2/2)

The redefined method must
satisfy old assertions but
can be more precise:

Release some
preconditions

Add (Restrict)
postconditions

class B

inherit
A redefine p end ;

feature
p is

require else
... -- other restrictions for calls

do
... -- new defintion

ensure then
... -- additionnal postconditions

end ;
end -- class

TYLA Objects April 8, 2019 125 / 141

Redefinition (2/2)

The redefined method must
satisfy old assertions but
can be more precise:

Release some
preconditions

Add (Restrict)
postconditions

class B

inherit
A redefine p end ;

feature
p is

require else
... -- other restrictions for calls

do
... -- new defintion

ensure then
... -- additionnal postconditions

end ;
end -- class

TYLA Objects April 8, 2019 125 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”
Definitions & Goals
Pre/Post-conditions
Redefinitions
Class Invariants
Assertions & Loop (in)variants

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 126 / 141

Class Invariants

A Class Invariant is an assertion attached to an object. The inherited
class also inherits invariants.

class RECTANGLE
...

invariant
(xc < 0 implies width > -xc) -- visible

and
(yc < 0 implies height > -yy) -- visible

and
width >= 0

and
height >= 0

end -- class RECTANGLE

TYLA Objects April 8, 2019 127 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”
Definitions & Goals
Pre/Post-conditions
Redefinitions
Class Invariants
Assertions & Loop (in)variants

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 128 / 141

Assertions

Can be inserted anywhere in the code.

-- Code
check

x > 0 ;
y < 0 implies largeur > -y

end ;

TYLA Objects April 8, 2019 129 / 141

Loop (in)variants
Only one (complex) kind of loop in Ei↵el

from
-- initialization
...

invariant
-- checked each iteration
...

variant
-- positive integer expression
...

until
-- exit condition
...

loop
-- loop body
...

end ;

TYLA Objects April 8, 2019 130 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 131 / 141

What is Reflection?

Reflection is the ability of a program to examine, introspect, and
modify its own structure and behavior at runtime.

Reflection is not limited to OOP!

TYLA Objects April 8, 2019 132 / 141

What is Reflection?

Reflection is the ability of a program to examine, introspect, and
modify its own structure and behavior at runtime.

Reflection is not limited to OOP!

TYLA Objects April 8, 2019 132 / 141

History

TYLA Objects April 8, 2019 133 / 141

Introspection & Intercession

Introspection
The ability of a program to observe and therefore reason about its
own state.

class MyReflectionClass{
public static boolean classequal(Object o1 , Object o2){

Class c1 , c2;
c1 = o1.getClass ();
c2 = o2.getClass ();
return (c1 == c2);

}
}

Reflection in Java

Encoding execution state as data (c1, c2) is called reification.

TYLA Objects April 8, 2019 134 / 141

Introspection & Intercession

Introspection
The ability of a program to observe and therefore reason about its
own state.

class MyReflectionClass{
public static boolean classequal(Object o1 , Object o2){

Class c1 , c2;
c1 = o1.getClass ();
c2 = o2.getClass ();
return (c1 == c2);

}
}

Reflection in Java

Encoding execution state as data (c1, c2) is called reification.

TYLA Objects April 8, 2019 134 / 141

Intercession

Intercession
The ability of a program to modify its execution state or alter its own
interpretation or meaning. Create, Manipulate and call method.

Class c = obj.getClass ();
Object o = c.newInstance ();

String s = "FooBar".
Class c = Class.forName(s);
Object o = c.newInstance ();

Intercession in Java

TYLA Objects April 8, 2019 135 / 141

Deeper in Introspection

Class c = obj.getClass ();
Constructor [] constructors = c.getConstructors ();

for (int i = 0; i < constructors.length; i++){
Class params [] =

constructors[i]. getParameterTypes ();
}

Enumeration of Constructors in Java

Class c = obj.getClass ();
Field[] fields = c.getFields ();
Object o = fields [2]. get(obj);
...
fields [3]. set(obj ,value);

Modifying attributes in Java

TYLA Objects April 8, 2019 136 / 141

What about other Programming Langages?

C#: provides facilities to create CIL and assembly this code

Go: reflections even on channels

Perl: Moose (built on top of Class::MOP, a metaobject
protocol) provides complete introspection for all Moose-using
classes.

Delphi (Objective-Pascal)/C++: only via RTTI (run-time
type information)

Python: the dir(..) function details the attributes of an object

TYLA Objects April 8, 2019 137 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP

TYLA Objects April 8, 2019 138 / 141

Table of Contents

4 Handling Multiple inheritance

5 Programming ”by Contract”

6 Reflection in OOP

7 Other models of OOP
Message Passing OOP

TYLA Objects April 8, 2019 139 / 141

The operation that define the operation on objects of a class are
called methods. The call to these methods are sometimes called
messages. The collection of methods of a class is called the
message protocol.

TYLA Objects April 8, 2019 140 / 141

	Object Oriented History
	Simula
	People Behind SIMULA
	SIMULA I
	Simula 67

	Smalltalk
	The People Behind Smalltalk
	Smalltalk 72
	Smalltalk 76
	Smalltalk 80

	The mysterious language
	People behind Eiffel
	Overview of the System
	Overview of the Language

	Object-Oriented Paradigms
	Handling Multiple inheritance
	Renaming Clauses
	Visibility Filter
	Redefinition Clauses
	Selection Clauses
	A-definition

	Programming "by Contract''
	Definitions & Goals
	Pre/Post-conditions
	Redefinitions
	Class Invariants
	Assertions & Loop (in)variants

	Reflection in OOP
	Other models of OOP
	Message Passing OOP

