
Generic Programming

Akim Demaille Étienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées

June 8, 2017



Generic Programming

1 Some definitions

2 CLU

3 Ada 83

4 C++

A. Demaille, E. Renault, R. Levillain Generic Programming 2 / 74



Some definitions

1 Some definitions

2 CLU

3 Ada 83

4 C++

A. Demaille, E. Renault, R. Levillain Generic Programming 3 / 74



A Definition of Generic Programming

“ Generic programming is a sub-discipline of computer science that
deals with finding abstract representations of efficient algorithms, data
structures, and other software concepts, and with their systematic
organization.
The goal of generic programming is to express algorithms and data
structures in a broadly adaptable, interoperable form that allows their
direct use in software construction.

— [Jazayeri et al., 2000, Garcia et al., 2003]

A. Demaille, E. Renault, R. Levillain Generic Programming 4 / 74



A Definition of Generic Programming (cont.)

“ Key ideas include:
Expressing algorithms with minimal assumptions about data
abstractions, and vice versa, thus making them as interoperable as
possible.
Lifting of a concrete algorithm to as general a level as possible without
losing efficiency; i.e., the most abstract form such that when
specialized back to the concrete case the result is just as efficient as
the original algorithm.

— [Jazayeri et al., 2000, Garcia et al., 2003]
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A Definition of Generic Programming (cont.)

“When the result of lifting is not general enough to cover all uses of an
algorithm, additionally providing a more general form, but ensuring
that the most efficient specialized form is automatically chosen when
applicable.
Providing more than one generic algorithm for the same purpose and
at the same level of abstraction, when none dominates the others in
efficiency for all inputs.
This introduces the necessity to provide sufficiently precise
characterizations of the domain for which each algorithm is the most
efficient.

— [Jazayeri et al., 2000, Garcia et al., 2003]
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Barbara Liskov

Nov. 7, 1939
Stanford
PhD supervised by J. McCarthy
Teaches at MIT
CLU (pronounce “clue”)
John von Neumann Medal
(2004)
A. M. Turing Award (2008)
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Genericity in CLU

First ideas of generic programming date back from CLU [Liskov, 1993]
(in 1974, before it was named like this).
Some programming concepts present in CLU:

data abstraction (encapsulation)
iterators (well, generators actually)
type safe variants (oneof)
multiple assignment (x, y, z = f(t))
parameterized modules

In CLU, modules are implemented as clusters
programming units grouping a data type and its operations.
Notion of parametric polymorphism.
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Parameterized modules in CLU

Initially: parameters checked at run time.
Then: introduction of where-clauses
(requirements on parameter(s)).
Only operations of the type parameter(s) listed in the where-clause
may be used.

→ Complete compile-time check of parameterized modules.
→ Generation of a single code.
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An example of parameterized module in CLU

set = cluster [t: type] is
create, member, size, insert, delete, elements

where t has equal: proctype (t, t) returns (bool)

Note:
Inside set, the only valid operation on t values is equal.
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Implementation of parameterized modules in CLU

Notion of instantiation:
binding a module and its parameter(s) [Atkinson et al., 1978].
Syntax: module[parameter]

Dynamic instantiation of parameterized modules.
For a given module, each distinct set of parameters is represented by a
(run-time) object.
Instantiated modules derived from a non-instantiated object module.
Common code is shared.
Pros and cons of run- or load-time binding:
Pros No combinatorial explosion due to systematic code generation

(as with C++ templates).
Cons Lack of static instantiation context means less opportunities to

optimize.
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Genericity in Ada 83

Introduced with the generic keyword [Meyer, 1986].
generic

type T is private;
procedure swap (x, y : in out T) is

t : T
begin

t := x; x := y; y := t;
end swap;

-- Explicit instantiations.
procedure int_swap is new swap (INTEGER);
procedure str_swap is new swap (STRING);

Example of unconstrained genericity.
Instantiation of generic clauses is explicit
(no implicit instantiation as in C++).
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Generic packages in Ada 83

generic
type T is private;

package STACKS is
type STACK (size : POSITIVE) is

record
space : array (1..size) of T;
index : NATURAL

end record;
function empty (s : in STACK) return BOOLEAN;
procedure push (t : in T; s : in out STACK);
procedure pop (s : in out STACK);
function top (s : in STACK) return T;

end STACKS;

package INT_STACKS is new STACKS (INTEGER);
package STR_STACKS is new STACKS (STRING);
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Constrained Genericity in Ada 83

Constrained genericity imposes restrictions on generic types:
generic

type T is private;
with function "<=" (a, b : T) return BOOLEAN is <>;

function minimum (x, y : T) return T is
begin

if x <= y then
return x;

else
return y;

end if;
end minimum;

Constraints are only of syntactic nature
(no formal constraints expressing semantic assertions)
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Constrained Genericity in Ada 83: Instantiation

Instantiation can be fully qualified
function T1_minimum is new minimum (T1, T1_le);

or take advantage of implicit names:
function int_minimum is new minimum (INTEGER);
Here, the comparison function is already known as “<=”.
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More Genericity Examples in Ada 83

Interface (“specification”):
-- matrices.ada
generic

type T is private;
zero : T;
unity : T;
with function "+" (a, b : T) return T is <>;
with function "*" (a, b : T) return T is <>;

package MATRICES is
type MATRIX (lines, columns: POSITIVE) is

array (1..lines, 1..columns) of T;
function "+" (m1, m2 : MATRIX) return MATRIX;
function "*" (m1, m2 : MATRIX) return MATRIX;

end MATRICES;
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More Genericity Examples in Ada 83

Instantiations:
package FLOAT_MATRICES is new MATRICES (FLOAT, 0.0, 1.0);
package BOOL_MATRICES is

new MATRICES (BOOLEAN, false, true, "or", "and");
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More Genericity Examples in Ada 83

Implementation (“body”):
-- matrices.adb
package body MATRICES is

function "*" (m1, m2 : MATRIX) is
result : MATRIX (m1’lines, m2’columns)

begin
if m1’columns /= m2’lines then

raise INCOMPATIBLE_SIZES;
end if;
for i in m1’RANGE(1) loop

for j in m2’RANGE(2) loop
result (i, j) := zero;
for k in m1’RANGE(2) loop

result (i, j) := result (i, j) + m1 (i, k) * m2 (k, j);
end loop;

end loop;
end loop;

end "*";
-- Other declarations...

end MATRICES;A. Demaille, E. Renault, R. Levillain Generic Programming 21 / 74
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A History of C++ Templates [Stroustrup, 1994]

Initial motivation: provide parameterized containers.
Previously, macros were used to provide such containers
(in C and C with classes).
Many limitations, inherent to the nature of macros:

Poor error messages
referring to the code written by cpp, not by the programmer.
Need to instantiate templates once per compile unit, manually.
No support for recurrence.
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Simulating parameterized types with macros

#define VECTOR(T) vector_ ## T

#define GEN_VECTOR(T) \
class VECTOR(T) { \
public: \

typedef T value_type; \
VECTOR(T)() { /* ... */ } \
VECTOR(T)(int i) { /* ... */ } \
value_type& operator[](int i) { /* ... */ } \
/* ... */ \

}

// Explicit instantiations.
GEN_VECTOR(int);
GEN_VECTOR(long);

int main() {
VECTOR(int) vi;
VECTOR(long) vl;

}
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A History of C++ Templates [Stroustrup, 1994] (cont.)

Introduction of a template mechanism around 1990,
later refined (1993) before the standardization of C++ in 1998.
Class templates.
Function templates (and member function templates).
Automatic deduction of parameters of template functions.
Type and non-type template parameters.
No explicit constraints on parameters.
Implicit (automatic) template instantiation
(though explicit instantiation is still possible).
Full (classes, functions) and partial (classes) specializations of
templates definitions.
A powerful system allowing metaprogramming techniques
(though not designed for that in the first place!)
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Class Templates

template <typename T>
class vector {
public:

typedef T value_type;
vector() { /* ... */ }
vector(int i) { /* ... */ }
value_type& operator[](int i) { /* ... */ }
/* ... */

};

// No need for explicit template instantiations.

int main() {
vector<int> vi;
vector<long> vl;

}
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Function Templates

Natural in a language providing non-member functions (such as C++).
template <typename T>
void swap(T& a, T& b)
{

T tmp = a;
a = b;
b = tmp;

}
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Simulating Function Templates

Class templates can make up for the lack of generic functions in most
uses cases.
template <typename T>
struct swap
{

static void operator()(T& a, T& b)
{

T tmp = a;
a = b;
b = tmp;

}
};

Eiffel does not feature generic function at all.
Java and C# provide only generic member functions.
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Automatic deduction of parameters

Parameters do not need to be explicitly passed when the compiler can
deduce them from the actual arguments.
int a = 42;
int b = 51;
swap(a, b);

A limited form of type inference.
Explicit specialization is still possible.
int a = 42;
int b = 51;
swap<long>(a, b);
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Automatic deduction of parameters (cont.)

This mechanism does not work for classes.
E.g., one cannot write std::pair(3.14f, 42)
(since std::pair is not a type!)
The right syntax is painfully long:
std::pair<float, int>(3.14f, 42)

Object Generators [The Boost Project, 2008] can make up for this
lack:
std::make_pair(3.14f, 42).
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Specialization of Template Definitions

Idea: provide another definition for a subset of the parameters.
Motivation: provide (harder,) better, faster, stronger implementations
for a given template class or function.
Example: std::vector<bool> has its own definition, different from
std::vector<T>.
Mechanism close to function overloading in spirit, but distinct.
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No Explicit Constraints on Template Parameters

Remember this piece of code from the course on OO Languages?
#include <iostream>
#include <list>

int main()
{

std::list<int> list;
list.push_back(1);
list.push_back(2);
list.push_back(3);
const std::list<int> list2 = list;

for (std::list<int>::iterator i = list2.begin();
i != list2.end(); ++i)

std::cout << *i << ’\n’;
}
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Poor Error Messages

G++ 2.95
bar.cc: In function ‘int main()’:
bar.cc:13: conversion from

‘_List_iterator<int,const int &, const int *>’
to non-scalar type
‘_List_iterator<int,int &, int *>’ requested

bar.cc:14: no match for
‘_List_iterator<int,int &,int *> & !=

_List_iterator<int,const int &,const int *>’
/usr/lib/gcc-lib/i386-linux/2.95.4/../../../../include/g++-3/stl_list.h:70:

candidates are:
bool _List_iterator<int,int &,int *>::operator !=

(const _List_iterator<int,int &,int *> &) const
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(A Bit Less) Poor Error Messages

G++ 3.3
list-invalid.cc: In function ‘int main()’:
list-invalid.cc:13: error: conversion from

‘std::_List_iterator<int, const int&, const int*>’
to non-scalar type
‘std::_List_iterator<int, int&, int*>’ requested

G++ 3.4, 4.0, 4.1, 4.2, 4.3 and 4.4
list-invalid.cc: In function ‘int main()’:
list-invalid.cc:13: error: conversion from

‘std::_List_const_iterator<int>’ to non-scalar type
‘std::_List_iterator<int>’ requested

G++ 4.5
list-invalid.cc: In function ‘int main()’:
list-invalid.cc:13:50: error: conversion from

‘std::list<int>::const_iterator’ to non-scalar type
‘std::list<int>::iterator’ requested
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(A Bit Less) Poor Error Messages

G++ 4.6 and 4.7
list-invalid.cc: In function ‘int main()’:
list-invalid.cc:13:50: erreur: conversion from

‘std::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
‘std::list<int>::iterator {aka std::_List_iterator<int>}’ requested

G++ 4.8 and 4.9
list-invalid.cc: In function ’int main()’:
list-invalid.cc:13:50: error: conversion from

’std::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
’std::list<int>::iterator {aka std::_List_iterator<int>}’ requested
for (std::list<int>::iterator i = list2.begin();

^
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Improvements?

G++ 5
list-invalid.cc: In function ’int main()’:
list-invalid.cc:12:48: error: conversion from

’std::__cxx11::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
’std::__cxx11::list<int>::iterator {aka std::_List_iterator<int>}’ requested
for (std::list<int>::iterator i = list2.begin();

^

G++ 6
list-invalid.cc: In function ’int main()’:
list-invalid.cc:12:48: error: conversion from

’std::__cxx11::list<int>::const_iterator {aka std::_List_const_iterator<int>}’
to non-scalar type
’std::__cxx11::list<int>::iterator {aka std::_List_iterator<int>}’ requested
for (std::list<int>::iterator i = list2.begin();

~~~~~~~~~~~^~
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(A Bit Less) Poor Error Messages

ICC 8.1 and 9.1
list-invalid.cc(8):

remark #383: value copied to temporary, reference
to temporary used

list.push_back (1);
^

[...]
list-invalid.cc(13): error: no suitable user-defined conversion

from
"std::list<int, std::allocator<int>>::const_iterator" to
"std::list<int, std::allocator<int>>::iterator" exists
for (std::list<int>::iterator i = list2.begin ();

^

ICC 10.0 and 11.0
list-invalid.cc(13): error: no suitable user-defined conversion

from "std::_List_const_iterator<int>"
to "std::_List_iterator<int>" exists

for (std::list<int>::iterator i = list2.begin ();
^
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(A Bit Less) Poor Error Messages

Clang 1.1 (LLVM 2.7)
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

In file included from list-invalid.cc:2:
In file included from /usr/include/c++/4.2.1/list:69:
/usr/include/c++/4.2.1/bits/stl_list.h:113:12: note: candidate

constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’struct std::_List_iterator<int> const’ for 1st argument

struct _List_iterator
^

1 error generated.
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(A Bit Less) Poor Error Messages

Clang 2.8 (LLVM 2.8)
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

In file included from list-invalid.cc:2:
In file included from /usr/include/c++/4.2.1/list:69:
/usr/include/c++/4.2.1/bits/stl_list.h:112:12: note: candidate

constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::_List_iterator<int> const &’ for 1st argument

struct _List_iterator
^

1 error generated.
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(A Bit Less) Poor Error Messages

Clang 2.9 (LLVM 2.9)
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

In file included from list-invalid.cc:2:
In file included from /usr/include/c++/4.2.1/list:69:
/usr/include/c++/4.2.1/bits/stl_list.h:112:12: note: candidate

constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’const std::_List_iterator<int> &’ for 1st argument

struct _List_iterator
^

1 error generated.
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(A Bit Less) Poor Error Messages

Clang 3.0 (LLVM 3.0) and Clang 3.1 (LLVM 3.1)
list-invalid.cc:13:33: error: no viable conversion from

’const_iterator’ (aka ’_List_const_iterator<int>’) to
’std::list<int>::iterator’ (aka ’_List_iterator<int>’)

for (std::list<int>::iterator i = list2.begin ();
^ ~~~~~~~~~~~~~~

/usr/include/c++/4.2.1/bits/stl_list.h:112:12: note: candidate
constructor (the implicit copy constructor) not viable:
no known conversion from
’const_iterator’ (aka ’_List_const_iterator<int>’) to
’const std::_List_iterator<int> &’ for 1st argument;

struct _List_iterator
^

1 error generated.
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Templates in the C++ Standard Library

1 Some definitions

2 CLU

3 Ada 83

4 C++
Templates
Templates in the C++ Standard Library
Template Metaprogramming
Concepts Lite [Sutton et al., 2013]
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Alexander Alexandrovich Stepanov (Nov. 16, 1950)

Алексан́др Алексан́дрович Степан́ов
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The Standard Template Library (STL)

A library of containers, iterators, fundamental algorithms and tools,
using C++ templates.
Designed by Alexander Stepanov at HP.
The STL is not the Standard C++ Library
(nor is one a subset of the other)
although most of it is part of the standard [ISO/IEC, 2003]
Introduces the notion of concept: a set of syntactic and semantic
requirements over one (or several) types.
But the language does not enforce them.
Initially planned as a language extension in the C++1x standard. . .
. . . but abandonned shortly before the standardization. :-(
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An example of Concept: Container

http://www.sgi.com/tech/stl/Container.html

Refinement of
Assignable

Associated types

Type typedef Meaning (abridged)
Value type X::value_type The type of the object stored.
Iterator type X::iterator The type of iterator used to iterate.
Const iterator type X::const_iterator Likewise, does not modify elements.
Reference type X::reference A type that behaves as a reference.
Const reference type X::const_reference A type that behaves as a const ref.
Pointer type X::pointer A type that behaves as a pointer.
Distance type X::difference_type Type used to represent a distance

between two iterators.
Size type X::size_type Type for nonnegative distance.
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An example of Concept: Container (cont.)

Valid expressions (abridged)

Name Expression Return type
Beginning of range a.begin() iterator if a is mutable,

const_iterator otherwise
End of range a.end() iterator if a is mutable,

const_iterator otherwise
Size a.size() size_type
Maximum size a.max_size() size_type
Empty container a.empty() Convertible to bool
Swap a.swap(b) void
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An example of Concept: Container (cont.)

Complexity guarantees

The copy constructor, the assignment operator, and the destructor are
linear in the container’s size.
begin() and end() are amortized constant time.
size() is linear in the container’s size.
max_size() and empty() are amortized constant time.
If you are testing whether a container is empty, you should always
write c.empty() instead of c.size() == 0. The two expressions are
equivalent, but the former may be much faster.
swap() is amortized constant time.
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An example of Concept: Container (cont.)

Invariants

Valid range For any container a,[a.begin(), a.end())
is a valid range.

Range size a.size() is equal to the distance from
a.begin() to a.end().

Completeness An algorithm that iterates through the range
[a.begin(), a.end()) will pass through
every element of a.

Models

std::vector
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Template Metaprogramming

1 Some definitions

2 CLU

3 Ada 83

4 C++
Templates
Templates in the C++ Standard Library
Template Metaprogramming
Concepts Lite [Sutton et al., 2013]
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Static Metaprogramming

Metaprograms: programs manipulating programs.
Static metaprograms: programs “running” at compile-time.
Notions of two-stage programming (compile and run times),
code generation.
Limited form of static introspection and reflection.
C++ templates can be used to implement template metaprograms.
Template metaprogramming is Turing-complete.
Applications : compile-time functions, functions on types, static
assertions, code factoring, etc.
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An Example of Compile-Time Function

A compile-time definition of factorial:

template <int n>
struct fact
{

static const int value =
n * fact<n - 1>::value;

};

template <>
struct fact<0>
{

static const int value = 1;
};

int main()
{

int x = fact<4>::value; // == 24
}

“Function” implemented as a
class template.
“Argument(s)” passed as
template parameter(s).
“Return value” returned as a
class (static) attribute.
Pure function: no side effects
(except compilation errors).
Uses recursive template
instantiations.
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Uses recursive template
instantiations.
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Nature and Origins of Template Metaprogramming

Template metaprograms are very dependent of C++ idiosyncrasies with
respect to templates.

Explicit specialization mechanism.
Implicit (automatic) template instantiation.

Verbose and unfriendly syntax.
Template metaprogramming discovered almost by accident by Erwin
Unruh, who wrote a program printing out a list of prime numbers at
compile-time as error messages.
Term “template metaprogramming” coined by Todd Veldhuizen.
A major programming paradigm of modern C++

(used in many Boost libraries, etc.).
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A Metaprogramming Example of the Tiger Compiler
Problem

Problem:
We need two hierarchies of visitors to traverse Abstract Syntax
Trees (ASTs):

a read-write version: Visitor
a read-only version: ConstVisitor.

Likewise for default traversals
(DefaultVisitor and DefaultConstVisitor).
Similar to STL’s iterator and const_iterator.
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A Metaprogramming Example of the Tiger Compiler
Visitor vs ConstVisitor

class Visitor
{

virtual void operator() (NilExp& e) = 0;
virtual void operator() (IntExp& e) = 0;
virtual void operator() (StringExp& e) = 0;
virtual void operator() (CallExp& e) = 0;
// ...

};

class ConstVisitor
{

virtual void operator() (const NilExp& e) = 0;
virtual void operator() (const IntExp& e) = 0;
virtual void operator() (const StringExp& e) = 0;
virtual void operator() (const CallExp& e) = 0;
// ...

};
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A Metaprogramming Example of the Tiger Compiler
Solutions

Duplicate the code.
→ Very bad: error prone, not robust to code evolution, etc.

Generate the code using C++ macros
→ Painful and low-level approach

(see previous examples about macro-based genericity).
Generate the code using a third-party language, e.g. M4.
→ Adds an extra dependency.

Generate at compile-time using template metaprogramming.
→ Best compromise between maintenance efforts, dependency

minimization and debugging difficulty.
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Factoring visitors with respect to const
A First Idea

template <type_qualifier Constness>
class GenVisitor
{

virtual void operator() (Constness NilExp& e) = 0;
virtual void operator() (Constness IntExp& e) = 0;
// ...

};
Not applicable as-is in C++ . . .
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Factoring visitors with respect to const
Making Constness a Function

template <type_function Constness>
class GenVisitor
{

virtual void operator() (Constness(NilExp)& e) = 0;
virtual void operator() (Constness(IntExp)& e) = 0;
// ...

};
where Constness can be a function on types such as :

T 7→ T (identity); or
T 7→ const T (const-ification of T ).

Remarks:
Still invalid C++ syntax, but. . .
. . . can be implemented in valid C++ using template
metaprogramming!
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Factoring visitors with respect to const
Functions on types

Traits (functions on types) from tc’s lib/misc/select_const.hh:

/// Return \a T as is.
template <typename T>
struct id_traits
{

using type = T;
};

/// Return \a T constified.
template <typename T>
struct constify_traits
{

using type = const T;
};

“Return value” expressed as a
typedef.
“Call” syntax:

id_traits<int>::type
constify_traits<int>::type

Traits invocations preceded by the
typename keyword in template
contexts.
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Factoring visitors with respect to const
Using traits to implement GenVisitor

template <template <typename> class Const>
class GenVisitor
{

virtual void operator() (typename Const<NilExp>::type& e) = 0;
virtual void operator() (typename Const<IntExp>::type& e) = 0;
// ...

};

using Visitor = GenVisitor<id_traits>;
using ConstVisitor = GenVisitor<constify_traits>;

A. Demaille, E. Renault, R. Levillain Generic Programming 60 / 74



Factoring visitors with respect to const
Using template typedefs

template <template <typename> class Const>
class GenVisitor
{

template <typename Type>
using const_t = typename Const<Type>::type;

virtual void operator() (const_t<NilExp>& e) = 0;
virtual void operator() (const_t<IntExp>& e) = 0;
// ...

};
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Concepts Lite [Sutton et al., 2013]

1 Some definitions

2 CLU

3 Ada 83

4 C++
Templates
Templates in the C++ Standard Library
Template Metaprogramming
Concepts Lite [Sutton et al., 2013]
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Constraining Template Arguments
From Concepts Lite — Andrew Sutton

template <Sortable_container C>
void sort(C& container);

template <typename C>
requires Sortable_container<C>()

void sort(C& container);
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Constraints

template <typename T>
concept bool Sortable()
{

return ...; // Returns true when T is a
// permutable container whose
// elements can be totally ordered

}

// Checked at point of use.
forward_list<int> lst { ... };
sort(lst);
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Constraints on Class Templates

template <Object T, Allocator A>
class vector;

template <typename T, typename A>
requires Object<T>() && Allocator<A>()

class vector;
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Constraints on Class Templates

template <Object T, Allocator A>
class vector
{

vector(const vector& x)
requires Copyable<T>();

void push_back(T&& x)
requires Movable<T>();

};
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Constraints on Multiple Types

template <Sequence S,
Equality_comparable<Value_type<S>> T>

Iterator_type<S> find(S&& s, const T& value);

template<typename S, typename T>
requires Sequence<S>()

&& Equality_comparable<T, Value_type<S>>()
Iterator_type<S> find(S&& s, const T& value);
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Overloading

template <Input_iterator I>
void advance(I& iter);

template <Bidirectional_iterator I>
void advance(I& iter);

template <Random_access_iterator I>
void advance(I& iter);
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Constraints

template <typename T>
concept bool Equality_comparable()
{

return requires (T a, T b) {
{a == b} -> bool;
{a != b} -> bool;

};
}
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Constraints

template <typename T>
concept bool Equality_comparable()
{

return requires (T a, T b) {
a == b; // Means a == b is valid syntax
requires Convertible<decltype(a == b), bool>();
a != b;
requires Convertible<decltype(a != b), bool>();

};
}
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